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Machine perception uses advanced sensors to
collect information of the surrounding scene for
situational awareness [1–7]. State-of-the-art ma-
chine perception [8] utilizing active sonar, radar
and LiDAR to enhance camera vision [9] faces
difficulties when the number of intelligent agents
scales up [10, 11]. Exploiting omnipresent heat
signal could be a new frontier for scalable per-
ception. However, objects and their environ-
ment constantly emit and scatter thermal ra-
diation leading to textureless images famously
known as the ‘ghosting effect’ [12]. Thermal vi-
sion thus has no specificity limited by informa-
tion loss while thermal ranging, crucial for nav-
igation, has been elusive even when combined
with artificial intelligence (AI) [13]. Here we
propose and experimentally demonstrate heat-
assisted detection and ranging (HADAR) over-
coming this open challenge of ghosting and bench-
mark it against AI-enhanced thermal sensing.
HADAR not only sees texture and depth through
the darkness as if it were day, but also perceives
decluttered physical attributes beyond RGB or
thermal vision, paving the way to fully-passive
and physics-aware machine perception. We de-
velop HADAR estimation theory and address its
photonic shot-noise limits depicting information-
theoretical bounds to HADAR-based AI perfor-
mance. HADAR ranging at night beats thermal
ranging and shows an accuracy comparable with
RGB stereovision in daylight. Our automated
HADAR thermography reaches the Cramér-Rao
bound on temperature accuracy, beating exist-
ing thermography techniques. Our work leads to
a disruptive technology that can accelerate the
Fourth Industrial Revolution (Industry 4.0) [14]
with HADAR-based autonomous navigation and
human-robot social interactions.

The emerging Industry 4.0 of smart technologies [15]
calls for a future with scalable human-robot social inter-
actions since it is expected that one in ten vehicles will
be automated by 2030 [16] and 20 million robot helpers
will be serving people [17]. Each of these agents will
collect information about its surrounding scene through
advanced sensors to make decisions without human inter-

vention. However, simultaneous perception of the scene
by numerous agents (scalable perception) is fundamen-
tally prohibitive for active modalities due to signal inter-
ference and eye safety [10, 11]. Quasi -passive approaches
like cameras are an alternative but they rely on ambi-
ent illumination. Furthermore, cameras cannot compete
with human perception even though important strides
[18] have been made recently based on deep learning
[19, 20]. It causes phenomena like phantom braking [9] in
automated vehicles due to the visual ambiguity and lack
of physical context in perception. A paradigm shift of
fully-passive perception beyond traditional vision is ur-
gently needed that can boost the AI industry (Fig. 1a-b).

An attractive approach to scalable perception is us-
ing the fully passive heat signal originating from in-
frared thermal radiation. Exploiting heat signals for
imaging [21–24] has well-known advantages, e.g., to see
through the darkness or solar glare as well as bad weather
[25], and not surprisingly, it has been the natural choice
of predators (snake) when hunting prey (rat) at night
[26]. Nevertheless, fundamental obstacles exist for heat-
assisted perception. Physical attributes of the scene,
namely, temperature (T , physical status), emissivity (e,
material fingerprint) and texture (X, surface geometry)
are mixed in photon streams, as objects and environ-
ment constantly emit and scatter thermal radiation. This
is manifested as the ghosting effect [12] related to lack
of texture in thermal imaging. Ghosting limits thermal
imaging only to night vision enhancement without any
specificity even when combined with AI algorithms (see
Tab. S3 in the Supple. Info. for a review).

TeX decomposition and TeX vision We address
the ghosting effect with an approach we call TeX de-
composition, which vividly recovers the texture from the
cluttered heat signal and also accurately disentangles
temperature and emissivity at the Cramér-Rao bound.
Representing these decluttered TeX attributes in HSV
color space (Hue = e,Saturation = T,Brightness = X)
leads to a paradigm shift of TeX vision with physical
context for machine perception (Fig. 1b-c). TeX vision
empowers AI algorithms to reach information-theoretic
bounds, which has thus far been elusive for traditional
RGB or thermal vision. Fig. 1c shows TeX vision for on-
and off-road scenes at night overcoming the ghosting ef-
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FIG. 1. HADAR as a paradigm shift in machine perception. a, Fully passive HADAR makes use of heat signals, as opposed
to active sonar, radar, LiDAR, and quasi-passive cameras. Atmospherical transmittance window (white area) and tempera-
ture of the scene determine the working wavelength of HADAR. b, HADAR takes thermal photon streams as input, records
hyperspectral-imaging heat cubes, addresses the ghosting effect through TeX decomposition (see Extended Data Fig. 1 for
TeX-Net and see Methods for all decomposition methods) and generates TeX vision for improved detection and ranging. c,
TeX vision demonstrated on our HADAR database and outdoor experiments (see Extended Data Figs. 2∼4) clearly shows that
HADAR sees textures through the darkness with comprehensive understanding of the scene.

fect (also see Supplementary movies for video demonstra-
tions). Our demonstrations of HADAR include detection
and ranging based on TeX vision, for both real-world level
HADAR database and outdoor experiments. We provide
detailed comparisons with state-of-the-art AI-enhanced
thermal sensing and prove that HADAR provides univer-
sal performance enhancement. This can lead to adoption
of TeX vision as an industry standard.

For intuitive clarity, we first explain the origin of the
ghosting effect using an example of thermal radiation
(visible) from a light bulb. Fig. 2 shows Monte Carlo

path tracing simulations of rays emanating from a bulb,
with reflection of environmental emission taken into ac-
count. Geometric textures on the bulb surface can be
seen only when the bulb is off. We emphasize that this
texture revealed by reflection is completely lost in di-
rect emission when the bulb is switched on, a familiar
scenario from daily experience. Since every object in a
complex scene emits and scatters thermal radiation, they
are thermal light sources with no texture like a shining
bulb. The total heat signal leaving an object α has two
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FIG. 2. Monte Carlo path tracing simulation of a light bulb
to explain the ‘ghosting effect’. Geometric texture on a light
bulb can only be seen when the bulb is off whereas this tex-
ture is completely missing when it is glowing. The blackbody
radiation can never be turned off leading to loss of texture
for thermal images. This ghosting effect presents the long-
standing roadblock for heat-assisted machine perception.

additive contributions,

Sαν = eανBν(Tα) + [1− eαν ]Xαν , (1)

where the first term is direct thermal emission (texture-
less), and the second term carrying texture is the envi-
ronmental emission entering the detector after scatter-
ing from the object. Here ν in the subscript denotes
wavenumber (spectrum) dependence. The key difference
with a shining bulb is that blackbody radiation Bν is
fundamentally governed by Planck’s law and cannot be
switched off. Textureless thermal imaging is thus widely
regarded as impossible to use for quantitative insight
about a scene. The environmental thermal illumina-
tion on object α from all other objects β is given by
Xαν =

∑
β 6=α VαβSβν , with Vαβ being the thermal light-

ing factor. Ghosting effect is exacerbated for high emis-
sivity materials in nature such as skin and plants (e ≈ 1)
as the total collected signal consists of dominant direct
emission and only a weak scattered signal. We note that
Sαν is invariant under joint transformations of tempera-
ture T , emissivity e and texture X (see Methods), which
we address as TeX degeneracy. In addition to the ghost-
ing effect, this TeX degeneracy renders the separation
of temperature-emissivity as a major roadblock [27] to
quantitative thermal sensing.

We recover the texture by breaking TeX degeneracy
and discretizing spectral emissivity eαν into eν(mα) in
a material library, M = {eν(m)|m = 1, 2, · · · ,M}, that
contains all possible spectral emissivity in the scene. This
opportunity of dimensional reduction is available natu-
rally in smart applications where materials usually have
industrial standards [28]. The material library explains
the physics but requires on-site collection/calibration.
We have also provided a generalized HADAR theory
that does not require an input of material library (see
Sec. SVC of the Supple. Info.). Our approach of TeX-Net
uses Eq. (1) to design physics-based loss and uses a 3D
convolutional neural network to learn spatio-spectral fea-
tures, in recovering texture X, temperature T and emis-
sivity e. With general HADAR performance shown in
Extended Data, here we demonstrate the fundamental

limits as well as real-world performance of HADAR.
HADAR identifiability We develop HADAR esti-

mation theory to address fundamental limits of object
identification from its thermal infrared signature. We
believe this will be crucial in guiding public policy for
the industrial revolution where decision accuracy of ma-
chine perception can be bounded by physical laws as
opposed to training data volume. HADAR is distinct
from hyperspectral imaging where material difference is
determined by the Euclidean distance between their re-
flectance spectra. In stark contrast, HADAR identifi-
ability is determined by multi-parameter estimation of
temperature, emissivity and texture (see Fig. S6 and rel-
evant contexts in Supple. Info.). We exploit the multi-
parameter Cramér-Rao bound and propose semantic dis-
tance to categorize objects based on their intrinsic ma-
terial properties. Fig. 3 shows a pertinent example of
human vs. robot identification. A human-shaped target
(Fig. 3a) could be a human (organic skin or fabrics ma-
terial) or robot (metallic) with distinct emissivity (top
inset), but they will produce a visually indistinguishable
incident spectrum on the detector (bottom inset; mod-
elled by FLIR A325sc). We define HADAR identifiability
as the maximum Shannon information of the target ma-
terial that one can retrieve from N incident photons. It
holds for all scenes (see Extended Data Fig. 6 for gener-
alization to multi-material scenes) and is given by

I = log2

[
1 + erf[

√
Nd20

2(1 + γ)
]

]
, (2)

where γ ≡ γ1N + γ0 is the detector’s electronic-noise
power normalized by the photonic shot-noise power. We
introduce d0 as the semantic distance between two mate-
rials with known spectral emissivity defined using single-
photon Fisher information matrix (see Methods).

The insight from Eq. (2) is that the shot-noise limit
arising from the discrete nature of photons sets the
information-theoretical upper bound to the performance
of all identification algorithms. Here we reach the bound
with machine-learning-based approaches widely deployed
for perception. We generate multiple spectra for human
and robot with Monte Carlo simulation in the shot-noise
limit, and use machine learning for material classifica-
tion. Fig. 3b shows machine learning performance (red
circles) is indeed bounded by the theoretical limit (red
curve). Our theory also applies to realistic detectors
with common noise sources (Flicker noise: cyan dashed;
Johnson-Nyquist noise: cyan dash-dotted; mixed noise:
cyan solid; modelled by FLIR A325sc) and corresponding
algorithmic performance (see Fig. S7 of Supple. Info.).
Fig. 3c shows the minimum photon number required to
identify the human-shaped target, which is determined
by unit statistical distance (

√
Nd0 = 1, I ≈ 0.75 bits).

The minimum photon number for given semantic dis-
tance or vice versa, the minimum semantic distance for
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FIG. 3. Shot-noise limit of HADAR identifiability. TeX degeneracy limits HADAR identifiability, as in the illustrative human-
robot identification problem (a). Top inset: distinct emissivity of human (graybody) and robot (aluminum). Bottom inset:
Near-identical incident spectra for human (37 C◦, red) and robot (72.5 C◦, blue). b, HADAR identifiability (Shannon infor-
mation) as a function of normalized photon number Nd20. We compare theoretical shot-noise limit of HADAR (red solid) and
Machine learning performance (red circles) on synthetic spectra generated by Monte Carlo simulations. We also consider real-
istic detectors with Johnson-Nyquist noise (γ0 = 3.34e5), Flicker noise (γ1N = 3.34e5), or mixed noise (γ1N = γ0 = 3.34e5).

Identifiability criterion (gray dashed) is
√
Nd0 = 1. Minimum photon number 1/d20 required to identify a target is usually large

due to the TeX degeneracy, dependent of the scene as well as the thermal lighting factor, as shown in c for scene a. Particularly,
it diverges at singularity V0 = 1 and T = T0 when the target is in thermal equilibrium with environment.

given photon number, sets fundamental limits to object
identification beyond training volume, providing a theo-
retical foundation for designing public policies.

HADAR depth resolution Depth of objects is a
critical scene attribute for autonomous navigation. Day-
light RGB stereovision already has widespread applica-
tions [8], but infrared thermal ranging is elusive. We
demonstrate that HADAR ranging at night beats ther-
mal ranging, with depth accuracy comparable to RGB
stereovision in daylight. Our approach of HADAR rang-
ing exploits stereovision based on the TeX vision, but
to show the importance of texture in ranging and better
capture the physics, here we focus on the scattered signal
that can be reconstructed through TeX decomposition.
Real-world HADAR ranging will be discussed later. For a
concise car/pedestrian scene, thermal imaging loses tex-
tures due to TeX degeneracy (Fig. 4a) and leads to inac-
curate ranging (Fig. 4d). HADAR (Fig. 4b) recovers tex-
ture comparable to grayscale optical imaging (Fig. 4c).
We note that the HADAR ranging result (Fig. 4e) is com-
parable to RGB stereovision (Fig. 4f). Quantitatively,
the absolute ranging error (cyan data points in insets)
with respect to the ground truth along white dashed
lines shows ∼ 100× accuracy improvement in HADAR
vs. thermal ranging (the improvement is scene depen-
dent).

We derive the fundamental limit on HADAR ranging
providing a rigorous theoretical foundation for future au-
tonomous navigation applications. HADAR ranging er-
ror δz of a window (block or feature area) equals the
disparity error between corresponding window positions
in stereo matching [29], up to a dimensionless coefficient.
Its fundamental limit is given by

√
Nδz ≥

√
2(1 + γ)(σ2

d + σ2
c ), (3)

where σd is the diffraction-induced uncertainty in esti-
mating a point source position from the incident photon
distribution. Here, σc is the photonic correspondence
uncertainty in locating the same point source between
stereo images in an extended scene with N observed pho-
tons. The physical significance of the photonic correspon-
dence uncertainty is the indistinguishability of photons
of the same frequency from different point sources. It is
given by the Cramér-Rao bound of window-position es-
timation in the ideal image of the scene (see Sec. SIIC of
the Supple. Info.). Theoretical bounds of δz with com-
puted σc along white dashed lines (red curves in insets of
Fig. 4d-e) are consistent with numeric experiments (cyan
data points), showing a 2-orders-of-magnitude accuracy
improvement in HADAR.

Real-world HADAR perception We now experi-
mentally demonstrate HADAR in real-world scenes. Our
HADAR prototype-1 for low-end applications is based on
commercial FLIR thermal camera with custom designed
spectral modules (see Extended Data Fig. 10). We pro-
pose a paradigm shift of physics-driven perception with
HADAR TeX attributes, as opposed to existing vision-
driven perception [18]. We use an outdoor scene at night
with a car, human being and Einstein cut-out to mimic
a human geometrically, and illustrate how HADAR ad-
dresses phantom braking. Fig. 5 shows that both RGB
optical imaging (Fig. 5a) and sparse LiDAR point cloud
(Fig. 5c; Velodyne Puck VLP-16) cannot distinguish the
human body with the real-scale Einstein cardboard. Fur-
thermore, LiDAR has difficulties in detecting the black
car due to low reflection, whereas the optical camera
cannot see objects in the dark. HADAR detects peo-
ple in the corresponding material region (skin+fabrics)
and clearly distinguishes it from the cardboard, overcom-
ing the phantom braking problem. See Extended Data
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FIG. 4. Fundamental limit of HADAR ranging. a and d,
Ranging based on raw thermal images shows poor accuracy
due to ghosting. b and e show recovered textures and en-
hanced ranging accuracy (∼ 100×) in HADAR, as compared
with thermal ranging. We also show the optical imaging (c)
and RGB stereovision (f) for comparison. Insets in d and
e show the depth error δz in Monte Carlo experiments (cyan
points) in comparison with our theoretical bound (red curve),
along white dashed lines.

Figs. 7 and 8 for more details about HADAR detection
and semantics. Major advantages of HADAR perception
utilizing physical context will be found in autonomous
navigation and wildlife monitoring, where multiple phys-
ical attributes beyond visual appearance are desired ei-
ther for safety guarantees [30] or scientific purposes [31].

Our HADAR prototype-2 for high-end applications is
based on a pushbroom hyperspectral imager (see Meth-
ods). We use an off-road scene to demonstrate that TeX
vision sees textures through the darkness with physical
context, and that HADAR ranging at night beats thermal
ranging, with accuracy comparable to RGB stereovision
in daylight. Real-world TeX vision with material identi-
fication and texture recovery has been shown in Fig. 1c
and can be found in Extended Data Figs. 3 and 4 with
more details. Fig. 6 shows the stereovision metric statis-
tics based on TeX vision at night, thermal vision at night,
and RGB vision in daylight. The comparison of metrics
(normalized by RGB depth metrics) in Fig. 6b clearly
demonstrates that HADAR ranging at night beats ther-
mal ranging and matches RGB stereovision in daylight,
abbreviated as ‘TeX night ∼ RGB day > IR night’. See
Fig. S19 of the Supple. Info. for general HADAR ranging

a Optical imaging

c Sparse LiDAR

b HADAR perception
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FIG. 5. Physics-driven HADAR perception in Indiana, USA.
For an outdoor scene of a human body, an Einstein cardboard,
and a black car at night, vision-driven object detection yields
two human bodies (error) and one car from optical imaging
(a), and two human bodies and no car (error) from LiDAR
pointcloud (c). HADAR perception based on TeX physical
attributes has comprehensive understanding of the scene and
accurate semantics (b; one human body and one car) for un-
manned decisions.

performance over various scenes.

HADAR thermography The COVID-19 pandemic
has brought about the urgent need of remote thermog-
raphy for fever surveillance. Unmanned and high-speed
infrared surveillance can significantly relieve the risk to
healthcare workers and help limit spread of the virus.
However, large scale temperature screening with existing
noncontact infrared thermometer or infrared thermog-
raphy is ineffective due to lack of adaptivity to emis-
sivity (complexion/skin variability), age, gender, circa-
dian variations and distance of the target [33, 34]. As
illustrated above, HADAR with TeX vision can identify
spectral emissivity, estimate distance, and recover tex-
tures, promising in advanced adaptivity for more accu-
rate temperature estimation. Here, we have also experi-
mentally demonstrated that HADAR thermography can
automatically recognize emissivity and reach the Cramér-
Rao bound on temperature accuracy (see Extended Data
Fig. 9). This goal has been elusive due to TeX degeneracy
which limits temperature accuracy in real-world environ-
ments. Unmanned HADAR thermography reaching the
Cramér-Rao bound is therefore promising for the smart
healthcare industry including early reliable skin cancer
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FIG. 6. HADAR ranging (TeX vision + AI) at night beats state-of-the-art thermal ranging (thermal vision + AI) at night
and matches RGB stereovision in daylight, abbreviated as ‘TeX night ∼ RGB day > IR night’. a, It can be clearly seen
that thermal imaging is impeded by the ghosting effect, while HADAR TeX vision overcomes the ghosting effect providing a
fundamental route to extracting thermal textures. This texture is crucial for AI algorithms to function optimally. To prove
the HADAR ranging advantage, we used GCNDepth (pre-trained on the KITTI dataset) [32] for monocular stereovision, as
the state-of-the-art AI algorithm. Ground truth depth is obtained through a high-resolution LiDAR. Depth metrics are listed
in Tab. I. We normalized the depth metrics over that of RGB stereovision. The comparison of normalized metrics (b) clearly
demonstrates ‘TeX night ∼ RGB day > IR night’, i.e., HADAR sees texture and depth through the darkness as if it were day.
See Methods for the definitions of used depth metrics. See Secs. SIIIA and SV of the Supple. Info. for more details.

Real-world 

performance (depth)

Error Accuracy (%)

Abs_Rel Sq_Rel RMSE RMSE_Log 𝛿1 𝛿2 𝛿3
Thermal vision + AI 0.61 13.44 22.96 1.24 7.72 14.82 28.18

RGB vision + AI 0.24 2.74 10.49 0.30 55.88 87.96 97.12

TeX vision + AI 0.27 2.69 9.90 0.32 45.25 87.52 96.77

TABLE I. Depth metrics statistics associated with Fig. 6 revealing HADAR ranging advantage.

detection [35].

Outlook We proposed and demonstrated HADAR
for fully-passive and physics-aware machine perception.
Our shot-noise limits of detection and ranging set the
benchmark and call for heat exploitation in the quan-
tum regime where single photon detectors are being de-
veloped beyond visible spectral range into the thermal
infrared [36]. Practical challenges exist, such as, real-
time data acquisition, spatio-spectral motion blur, and
functionality-cost optimization. Nevertheless, we believe
HADAR will lead to a new chapter in the Fourth Indus-
trial Revolution with applications in autonomous navi-
gation, healthcare, agriculture, wildlife monitoring, geo-
sciences and defense industry.

∗ zjacob@purdue.edu
[1] C. Rogers, A. Y. Piggott, D. J. Thomson, R. F.

Wiser, I. E. Opris, S. A. Fortune, A. J. Compston,
A. Gondarenko, F. Meng, X. Chen, G. T. Reed, and
R. Nicolaescu, A universal 3d imaging sensor on a sili-
con photonics platform, Nature 590, 256 (2021).

[2] D. Floreano and R. J. Wood, Science, technology and
the future of small autonomous drones, Nature 521, 460
(2015).

[3] Y. Jiang, S. Karpf, and B. Jalali, Time-stretch lidar as
a spectrally scanned time-of-flight ranging camera, Nat.
Photonics 14, 14 (2020).

[4] L. Maccone and C. Ren, Quantum radar, Phys. Rev.
Lett. 124, 200503 (2020).

[5] J. Tachella, Y. Altmann, N. Mellado, A. McCarthy,
R. Tobin, G. S. Buller, J.-Y. Tourneret, and S. McLaugh-
lin, Real-time 3d reconstruction from single-photon li-
dar data using plug-and-play point cloud denoisers, Nat.
Commun. 10, 4984 (2019).

[6] J. Lien, N. Gillian, M. E. Karagozler, P. Amihood,
C. Schwesig, E. Olson, H. Raja, and I. Poupyrev, Soli:
Ubiquitous gesture sensing with millimeter wave radar,
ACM Trans. Graph. 35, 142 (2016).

[7] A. Kirmani, D. Venkatraman, D. Shin, A. Colaço,
F. N. C. Wong, J. H. Shapiro, and V. K. Goyal, First-
photon imaging, Science 343, 58 (2014).

[8] A. Geiger, P. Lenz, and R. Urtasun, Are we ready
for autonomous driving? the kitti vision benchmark
suite, in 2012 IEEE conference on computer vision and
pattern recognition (IEEE, 2012) pp. 3354–3361. Also
see, e.g., https://www.tesla.com/autopilot; https:

//waymo.com/tech/

mailto:zjacob@purdue.edu
https://doi.org/10.1038/s41586-021-03259-y
https://doi.org/10.1038/nature14542
https://doi.org/10.1038/nature14542
https://doi.org/10.1038/s41566-019-0548-6
https://doi.org/10.1038/s41566-019-0548-6
https://doi.org/10.1103/PhysRevLett.124.200503
https://doi.org/10.1103/PhysRevLett.124.200503
https://doi.org/10.1038/s41467-019-12943-7
https://doi.org/10.1038/s41467-019-12943-7
https://doi.org/10.1145/2897824.2925953
https://doi.org/10.1126/science.1246775
https://www.tesla.com/autopilot
https://waymo.com/tech/
https://waymo.com/tech/


7

[9] B. Nassi, Y. Mirsky, D. Nassi, R. Ben-Netanel,
O. Drokin, and Y. Elovici, Phantom of the adas: Se-
curing advanced driver-assistance systems from split-
second phantom attacks, in Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications
Security , CCS ’20 (Association for Computing Machin-
ery, New York, NY, USA, 2020) p. 293–308.

[10] G. B. Popko, T. K. Gaylord, and C. R. Valenta, Inter-
ference measurements between single-beam, mechanical
scanning, time-of-flight lidars, Opt. Eng. 59, 1 (2020).

[11] J. Hecht, Lidar for self-driving cars, Opt. Photon. News
29, 26 (2018). Eye safety requires the emitting power of
an agent to scale down as the inverse of the number of
agents.

[12] K. P. Gurton, A. J. Yuffa, and G. W. Videen, Enhanced
facial recognition for thermal imagery using polarimetric
imaging, Opt. Lett. 39, 3857 (2014).

[13] W. Treible, P. Saponaro, S. Sorensen, A. Kolagunda,
M. O’Neal, B. Phelan, K. Sherbondy, and C. Kamb-
hamettu, Cats: A color and thermal stereo benchmark,
in Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR) (2017). Also see
http://thermalradar.com/, where ranging has to be ac-
tive.

[14] K. Schwab, The fourth industrial revolution: what it
means, how to respond, Foreign Affairs 12, 2015 (2015).

[15] B. L. Risteska Stojkoska and K. V. Trivodaliev, A review
of internet of things for smart home: Challenges and so-
lutions, J. Cleaner Prod. 140, 1454 (2017).

[16] https://mailchi.mp/statista/autonomous_cars_

20200206?e=145345a469.
[17] https://resources.oxfordeconomics.com/

how-robots-change-the-world.
[18] A. Garcia-Garcia, S. Orts-Escolano, S. Oprea, V. Villena-

Martinez, P. Martinez-Gonzalez, and J. Garcia-
Rodriguez, A survey on deep learning techniques for im-
age and video semantic segmentation, Appl. Soft Com-
put. 70, 41 (2018).

[19] Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Na-
ture 521, 436 (2015).

[20] M. I. Jordan and T. M. Mitchell, Machine learning:
Trends, perspectives, and prospects, Science 349, 255
(2015).

[21] R. Gade and T. B. Moeslund, Thermal cameras and ap-
plications: a survey, Mach. Vis. Appl. 25, 245 (2014).

[22] K. Tang, K. Dong, C. J. Nicolai, Y. Li, J. Li, S. Lou,
C.-W. Qiu, D. H. Raulet, J. Yao, and J. Wu, Millikelvin-
resolved ambient thermography, Sci. Adv. 6, eabd8688

(2020).
[23] M. Henini and M. Razeghi, Handbook of infrared detec-

tion technologies (Elsevier, 2002).
[24] A. Haque, A. Milstein, and F.-F. Li, Illuminating the

dark spaces of healthcare with ambient intelligence, Na-
ture 585, 193 (2020).

[25] K. Beier and H. Gemperlein, Simulation of infrared detec-
tion range at fog conditions for enhanced vision systems
in civil aviation, Aerosp. Sci. Technol. 8, 63 (2004).

[26] E. Newman and P. Hartline, Integration of visual and in-
frared information in bimodal neurons in the rattlesnake
optic tectum, Science 213, 789 (1981).

[27] A. Gillespie, S. Rokugawa, T. Matsunaga, J. S. Cothern,
S. Hook, and A. B. Kahle, A temperature and emissivity
separation algorithm for advanced spaceborne thermal
emission and reflection radiometer (aster) images, IEEE

Trans. Geosci. Remote Sens. 36, 1113 (1998).
[28] A. Baldridge, S. Hook, C. Grove, and G. Rivera, The

aster spectral library version 2.0, Remote Sens. Environ.
113, 711 (2009).

[29] R. Szeliski, Computer Vision – Algorithms and Applica-
tions. (Springer, London, 2011).

[30] B. Khaleghi, A. Khamis, F. O. Karray, and S. N. Razavi,
Multisensor data fusion: A review of the state-of-the-art,
Inf. Fusion 14, 28 (2013).

[31] C. E. R. Lopes and L. B. Ruiz, On the development of
a multi-tier, multimodal wireless sensor network for wild
life monitoring, in 2008 1st IFIP Wireless Days (IEEE,
2008) pp. 1–5.

[32] A. Masoumian, H. A. Rashwan, S. Abdulwahab, J. Cris-
tiano, M. S. Asif, and D. Puig, Gcndepth: Self-supervised
monocular depth estimation based on graph convolu-
tional network, Neurocomputing (2022).

[33] W. F. Wright and P. A. Mackowiak, Why temperature
screening for coronavirus disease 2019 with noncontact
infrared thermometers does not work, Open Forum In-
fect. Dis. 8, 10.1093/ofid/ofaa603 (2020).

[34] P. Ghassemi, T. J. Pfefer, J. P. Casamento, R. Simp-
son, and Q. Wang, Best practices for standardized per-
formance testing of infrared thermographs intended for
fever screening, PLoS One 13, 1 (2018).

[35] C. Magalhaes, J. M. R. Tavares, J. Mendes, and R. Var-
dasca, Comparison of machine learning strategies for in-
frared thermography of skin cancer, Biomed. Signal Pro-
cess. Control 69, 102872 (2021).

[36] D. V. Reddy, R. R. Nerem, S. W. Nam, R. P. Mirin, and
V. B. Verma, Superconducting nanowire single-photon
detectors with 98% system detection efficiency at 1550
nm, Optica 7, 1649 (2020).

https://doi.org/10.1145/3372297.3423359
https://doi.org/10.1145/3372297.3423359
https://doi.org/10.1145/3372297.3423359
https://doi.org/10.1117/1.OE.59.5.053106
https://doi.org/10.1364/OPN.29.1.000026
https://doi.org/10.1364/OPN.29.1.000026
https://doi.org/10.1364/OL.39.003857
http://thermalradar.com/
https://doi.org/10.1016/j.jclepro.2016.10.006
https://mailchi.mp/statista/autonomous_cars_20200206?e=145345a469
https://mailchi.mp/statista/autonomous_cars_20200206?e=145345a469
https://resources.oxfordeconomics.com/how-robots-change-the-world
https://resources.oxfordeconomics.com/how-robots-change-the-world
https://doi.org/10.1016/j.asoc.2018.05.018
https://doi.org/10.1016/j.asoc.2018.05.018
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1126/science.aaa8415
https://doi.org/10.1126/science.aaa8415
https://doi.org/10.1007/s00138-013-0570-5
https://doi.org/10.1126/sciadv.abd8688
https://doi.org/10.1126/sciadv.abd8688
https://doi.org/10.1038/s41586-020-2669-y
https://doi.org/10.1038/s41586-020-2669-y
https://doi.org/10.1016/j.ast.2003.09.002
https://doi.org/10.1126/science.7256281
https://doi.org/10.1109/36.700995
https://doi.org/10.1109/36.700995
https://doi.org/10.1016/j.rse.2008.11.007
https://doi.org/10.1016/j.rse.2008.11.007
https://doi.org/10.1007/978-1-84882-935-0
https://doi.org/10.1007/978-1-84882-935-0
https://doi.org/10.1093/ofid/ofaa603
https://doi.org/10.1371/journal.pone.0203302


METHODS

TeX degeneracy For an object α, its spectral ra-
diance Sαν given by Eq. 1 in the main text is invari-
ant if we change its physical attributes {Tα, eαν , Xαν}
to {T ′α, e′αν , X ′αν}, where T ′α is an arbitrary temperature
value, X ′αν is an arbitrary spectral texture curve, and the
spectral emissivity curve e′αν is given by

e′αν =
eαν [Bν(Tα)−Xαν ] + [Xαν −X ′αν ]

Bν(T ′α)−X ′αν
.

Here, ν is the wavenumber, and B is the blackbody ra-
diation. Physical states having distinct triplets of TeX
attributes but having the same observed heat signal Sν
are addressed as TeX degeneracy.

TeX decomposition We exploited a material library
M and the mathematical structure of X to overcome
TeX degeneracy. In this paper, we proposed several ap-
proaches to fully solve TeX decomposition, depending on
the specific problem. Learning based TeX-Net (see Ex-
tended Data Fig. 1 for the architecture) utilizing both
spatial and spectral information in decomposing TeX is
our general solution, whereas we have also provided the
analytical inverse function, least-squares estimator, and
TeX-SGD (semi-global decomposition) as non-machine-
learning baselines (see Sec.SIIIB of the Supple. Info.).
For the HADAR database and HADAR prototype-2 ex-
periments, we used TeX-Net and TeX-SGD. For human-
robot identification in Fig. 3, we used a one-dimensional
3-layer convolutional neural network (with ReLU activa-
tion) followed by a softmax classifier to recognize ma-
terial category mα from collected radiation spectrum
Sαν . Categorical cross entropy was used as the loss
function, and Adam optimizer was used. For Extended
Data Fig. 7, we used the analytical inverse function of
T and X following a material classifier as mentioned
above. In HADAR prototype-1 experiments, we used
the least-squares estimator for TeX decomposition. In
Fig. 5, the material library was drawn from the NASA
JPL ECOSTRESS spectral library [37], with emissivity
shown in Sec.SIVD of the Supple. Info. In HADAR
prototype-2 experiments, we used a semantic library, in-
stead of the material library, estimated from the data
itself, see Sec.SVB of the Supple. Info. With the least-
squares estimator, we verified that TeX decomposition is
crucial for vision applications and goes beyond the tradi-
tional TE (temperature-emissivity) separation approach,
see Fig. S20 of the Supple. Info.

TeX vision and pseudo-TeX vision Motivated by
coloring convention in existing literature where different
colors represent different categories, we use HSV format
to represent TeX with mapping H = e, S = T,V = X. In
this TeX vision, different hues of color represent different
materials, saturation indicates temperature, and bright-
ness gives textures. The texture recovered in TeX vision

is from increased information in sensor data, in contrast
to state-of-the-art approaches such as Automatic gain
control (AGC). AGC is also applied to TeX to get better
visualization. See Sec. SIIIC of the Supple. Info. for
more details about TeX vision and how the TeX vision
image is formed.

As TeX vision requires the input of hyperspectral heat
cubes, we also propose pseudo-TeX vision to extend its
applications to common thermal datasets without spec-
tral resolution. See Sec. SIIID of the Supple. Info. for
details.

Monte Carlo path tracing The HADAR database
is an LWIR (long-wave infrared) stereo-hyperspectral
database mostly synthesized by exploiting Planck’s law
and Kirchhoff’s law in Blender Cycles renderer. The
database has been made public and is available at https:
//github.com/FanglinBao/HADAR, where detailed de-
scriptions can be found. In this paper, Lambertian (dif-
fusive) reflectance was used for simplicity. Samples per
pixel was 2000. We also implemented path tracer accord-
ing to Eq. 1, per wavenumber, with OpenGL (version 4.6)
and Compute Unified Device Architecture (CUDA, ver-
sion 10.2) on GPU. For Fig. 4, ray depth was 8 with
(thermal imaging) or without (HADAR perception) di-
rect emission at the final step. Rendering wavenumber
was 769 cm−1. The ground and the sky were at 20 C◦.
The emissivity pattern of the ground was generated by
mapping a regular road image to emissivity between 0.8
and 1, to maximize texture loss in thermal vision. Syn-
thetic textures for all other scenes were surface normal
textures. The optical image was rendered without direct
emission from objects but with sky illumination. Im-
age size is 640 × 480. For Fig. 2, ray depth was 8 with
normal texture on an opaque glass bulb. For Extended
Data Fig. 7, ray depth was 1 for 11 discrete wavenumbers
within 715 ∼ 1250 cm−1.

HADAR estimation theory Here, we provide a
short answer to the question of ‘How many photons are
needed to identify the target material’. Full derivations
of fundamental bounds for both detection and ranging
are given in Sec. SII of the Supple. Info. Identifying
the target between two candidate materials e1ν and e2ν
is mapped to estimating the fraction g of a mixture of
these two materials, eν = (1 − g)e1ν + ge2ν , with g = 0
indicating one material and g = 1 the other. The normal-
ized spectrum pαν ≡ Sαν/

∫
Sανdν describes the spectral

probability density for one incident photon. The Fisher
information matrix (FIM) regarding unknown parame-
ters Θ = {g, T, V0} reads Jij = NJ0

ij/(1 + γ), where

J0
ij =

∫ ∂ipαν ·∂jpαν
pαν

dν is the single-photon FIM, N is
the total number of photon, T is the temperature, V0 is
the thermal lighting factor of the environment, i, j ∈ Θ,
and γ ≡ γ1N + γ0 is the electronic-noise power normal-
ized by the shot-noise power. The Cramér-Rao bound
σ2 ≡ [1/J ]gg puts a lower bound to the variance of any

https://github.com/FanglinBao/HADAR
https://github.com/FanglinBao/HADAR
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unbiased estimator of g, and the statistical distance is
d ≡ 1/2σ. Only depending on material, semantic dis-
tance d0 ≡ 1/2σ0 with σ2

0 ≡ [1/J0]gg describes how
different two materials are with each other, under the
TeX degeneracy. The related but distinct concept of sta-
tistical distance depicts the overall distinguishability of
two spectra but depends on the detector and measure-
ment time. Our semantic distance approach captures the
intrinsic identifiability of objects from the scene alone.
The detection probability (true positive rate) is given by
P = [1 + erf(d/

√
2)]/2. The Shannon information of ma-

terial is given by I = log2P − log2(1/2).

In evaluating the theoretical bound on HADAR iden-
tifiability in Fig. 3, we used V0 = 0.5 (α suppressed) and
T0 = 20 C◦. Target distance was 30 m when input signal
was evaluated. In the Monte Carlo simulations in Fig. 3b,
we first found the nearest robot condition (T = 83.46 C◦,
V0 = 0.17) to human (T = 37 C◦, V0 = 0.5). We used 150
sampling normalized photon numbers, and then for each
normalized photon number, we generated 5000 spectra
(715 ∼ 1250 cm−1, ∆ν = 1 cm−1) for each of two can-
didates with Monte Carlo simulation in the shot-noise
limit. At last, we used machine learning (25% spectra
for training, 25% for validation, and 50% for test) for
material classification, and the test accuracy was used to
compute Shannon information for each normalized pho-
ton number. The dimensionality curse for high spectral
resolution (536 bands used) leads machine learning to
over-fitting, and slight deviation between Monte Carlo
simulation and theoretical prediction can be observed in
Fig. 3b. Once the dimensionality curse is relieved, perfect
agreement can be reached, see Fig. S7 in Supple. Info.
where all spectra are down-sampled into 3 spectral bands
(dimension = 3) for both theory and machine learning.

In evaluating the theoretical bound on ranging er-
ror in Fig. 4 without photon number, we used Jx =
(∂xNiq)

2/(Niq + σ2) [Eq. S37 in Supple. Info.] instead.
Variance was estimated by matching corresponding pixels
according to the ground truth disparity and computing
the signal fluctuation. Finite difference was used to ap-
proximate derivative. b = 0.2 m and f = 1.4 cm. The
block size in correlation-based sub-pixel block matching
was 5× 5 (see Fig. S10 of Supple. Info. for AI results).

Guiding public policy The HADAR identifiable cri-

terion is
Nd20
1+γ = 1, which means one can identify the tar-

get material if
Nd20
1+γ ≥ 1. The semantic distance between

human body (skin) and robot (aluminum) in Fig. 3 is
calculated to be d0 ≈ 0.001. This requires N

1+γ ≥ 106 to
identify the target if the environment is at T0 = 20 C◦ and
V0 = 0.5 (see Fig. 3c). The observed photon number N is
related to the human-robot scene, as well as the f-number
(focal length f over the aperture size D), exposure time
t, and pixel size Ap, see the heat signal model in Sec. SI of
the Supple. Info. Eventually, the above identifiable crite-
rion leads to the minimum requirement of the hardware

configurations,
tAp

(1+γ)(f/D)2 ≥ 5 × 10−16. This minimum

requirement of the hardware will guide the public policies
in the AI industry. For example, the lowest detectivity
(or highest NEP), the smallest aperture size, the high-
est frame rate and hence the maximum travelling speed,
etc., must meet the above inequality so as to be able
to identify human vs. robot. If the detector doesn’t
meet the above requirement, its collected data will be
insufficient in information. No matter how much data is
collected and used to train a neural network (how large
the training volume is), machine learning cannot perform
well (see the machine learning performance in Fig. 3b of
the main text when the photon number is insufficient,
i.e., the normalized photon number is below 1). If the
detector is given, e.g., the FLIR A325sc camera, we have

tAp

(1+γ)(f/D)2 = 8.16× 10−18 in one image frame. To meet

the criterion, we must have d0 > 0.0078, which means the
FLIR A325sc camera can only distinguish sufficiently dif-
ferent material pairs in one image frame, such as, organic
skin vs. glass mannequin (d0 = 0.049). This minimum
semantic distance identifiable by the given detector will
also guide the public policies in the AI industry. For ex-
ample, in which scenario the given camera can be used,
and in which scenario the camera cannot. Likewise, our
fundamental limit of HADAR ranging accuracy can also
put requirements on hardware configurations or restrict
travelling speed, etc., and guide the public policies.

Our fundamental limits bound the average machine
learning performance due to the shot noise and detec-
tor noise. Lucky evaluation events could occur but they
will fluctuate around the average bounds, as can be seen
in Fig. 3b and insets of Fig. 4. Human error or software
bugs are not considered in our bounds, but our bounds
are useful because they depict the optimal performance
of machine learning when human error and software bugs
are completely corrected. Therefore, our bounds related
to physical laws of thermal photonic information theory
can be used as a guidance to public policies.

Thermal camera specifications Our FLIR A325sc
thermal camera is a science-grade high-performance ra-
diometric camera (price ∼ $10, 000). It is equipped with
an uncooled Vanadium Oxide (VOx) microbolometer de-
tector that produces thermal images of 320× 240 pixels.
Detector pitch is 25µm. Pixel size is approximated as
12µm. Time constant is 12 ms. Focal length is 18 mm.
And f-number is 1.3. Noise equivalent temperature differ-
ence (NETD) is typically < 50 mK and characterized to
be 47.8 mK. FLIR A325sc was available when the exper-
iments in this paper were designed and conducted. We
note that now it has been discontinued and replaced by
a more advanced model, FLIR A655sc. The latter has a
640 × 480 pixel array with typical NETD < 30 mK, but
it is twice as expensive. A better camera will give better
HADAR data. Since the advantage of HADAR over tra-
ditional thermal vision comes from the spectral resolution
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and the theory we used to interpret the hyperspectral
data, FLIR A325sc presents a better functionality-cost
balance.

FTIR specifications Our Nicolet iS50 is equipped
with a cooled (liquid Nitrogen) MCT-A detector, with
sensor element size being 1 mm. Its special detectivity is
4.7×1010 cm ·Hz1/2/W, with preamplifier bandwidth be-
ing 175 kHz. Spectral resolution ∆ν = 0.48 cm−1 within
769 ∼ 1332 cm−1 is used in this paper. Aperture of ex-
ternal optics is 2 inches. Focal length of external optics
is about 10 cm. Optical efficiency is approximated as 0.9
in deriving the Cramér-Rao bound on temperature accu-
racy in Extended Data Fig. 9.

Prototype HADAR calibration and data col-
lection Our HADAR prototype-1 was built with FLIR
A325sc as the detector, plus 10 thermal infrared filters
(price ∼ $10, 000) from Spectrogon to retrieve spectral
resolution. A gold mirror was also mounted on the filter
wheel to monitor the status of the detector in real time.
Once started, the detector was left to stabilize for at least
30 min to warm up. In experiments when the detector ex-
changed heat with the scene, mirror signal was checked so
that data collected with very different detector status was
ignored. The filter transmittance curves were character-
ized by Nicolet iS50. The spectral response curve of the
camera was calibrated with standard blackbody source
(EOI. Inc. DCN1000N7). In experiments, a uniform ref-
erence object was used to further calibrate camera’s self
radiation pattern, as well as the side effect of the filter
wheel acting as an out-of-focus diaphragm. The exper-
imental data collected were left and right heat cubes of
dimension Height×Width× Channel = 240× 320× 10.
Number of channels was the number of filters. See Ex-
tended Data Fig. 10 for HADAR prototype-1 calibration
and data collection.

The HADAR prototype-2 is based on a pushbroom hy-
perspectral imager with a cooled HgCdTe sensor. To
collect the real-world experimental data, we formed a
partnership with DARPA (The Defense Advanced Re-
search Projects Agency, through the Invisible Headlights
project) and the Army night-vision team (Infrared Cam-
era Technology Branch, DEVCOM C5ISR Center, U.S.
Army). The pushbroom hyperspectral imager gives 256
spectral bands, but its price is over a million dollars. The
focal length is 50 mm, and the f-number is f/0.9. It uses
a 256 × 256 focal plane array with 40 µm pitch pixels.
The typical noise of the sensor is around 1 ‘microflick’,
which at 10 µm wavelength corresponds to about a 1000:1
signal-to-noise ratio. Explicitly, for a 300 K temperature
scene at 10 µm, the noise equivalent temperature differ-
ence is around 63 mK. Denoising and extrinsic calibra-
tions can be found in Sec. SV of the Supple. Info.

In our proof-of-concept experiments, we used the filter-
wheel approach to demonstrate the HADAR prototype-
1. The filter-wheel approach is time consuming but cost
effective, suitable for low-end HADAR applications. In

contrast, HADAR prototype-2 with a pushbroom sen-
sor was demonstrated for high-end HADAR applications.
HADAR can also be implemented by other approaches
with mosaic sensors, gratings, prisms, interferometers, or
Fabry-Perot cavities, depending on the desired spectral
resolution, spatial resolution, data acquisition speed, or
functionality-cost balance.

Computational efficiency and deploy-ability (1)
Our TeX-Net has about 0.5M weights in total. The
evaluation of our TeX-Net (GPU Nvidia RTX A6000
48GB) takes 42.4 ms. Data collection of the currently
used pushbroom hyperspectral imager takes around 1s,
but the filter-wheel approach can be optimized down to
around 10ms with high-speed filter wheel (e.g., Telops
multispectral cameras). Overall, our results show that
HADAR data collection and processing can support up to
20 Hz TeX vision frame rate. Pursuing higher frame rate
motivates further research on new hyperspectral imag-
ing sensors to collect thermal infrared data and photonic
neural networks for TeX decomposition. (2) Our gen-
eralized HADAR theory does not require the input of a
material library and hence is free of on-site library collec-
tion/calibration. This enables real-time HADAR appli-
cations. Our HADAR prototype-2 experiment is a field
test with the HADAR sensor mounted on a car. Corre-
sponding TeX vision results on the DARPA IH test data
shows the deploy-ability of HADAR, see Extended Data
Figs. 3 and 4.

Standard depth metrics Let pred and gt denote
predicted and ground truth depth, respectively. D rep-
resents the set of all predicted depth values. | · | returns
the number of elements, and || · || returns the absolute
value. The standard depth metrics used in Fig. 6 are
defined as below.

Absolute and Relative Error,

Abs Rel = 1/|D| · Σpred∈D||gt− pred||/gt.

Squared Relative Error,

Sq Rel = 1/|D| · Σpred∈D||gt− pred||2/gt.

Root Mean Squared Error,

RMSE =
√

1/|D| · Σpred∈D||gt− pred||2.

Root Mean Squared Log Error,

RMSE Log =

√
1

|D|
∑

pred∈D

|| log (gt)− log (pred)||2.

δt Accuracy,

δt =
1

|D|
|{pred ∈ D|max(

gt

pred
,
pred

gt
) < 1.25t}|.

HADAR thermography Note that existing ther-
mal imaging measures the total radiance and approx-
imates emissivity eν as a default parameter or manu-
ally input constant e. This causes the temperature read-
out to be biased and incorrect. Furthermore, when two
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different materials at different temperatures happen to
emit the same total radiance, thermal imaging predicts
the same temperature leading to the thermal camouflage
effect [38, 39] (the integral version of TeX degeneracy;
Extended Data Fig. 9b). We use 2 stripes of tapes on
plastics (not shown) and 3 patches of tapes on silicon
(3 rectangles in Extended Data Fig. 9a-d) to read out
the temperature without influence from non-trivial emis-
sivity of sample materials. Non-uniform heating effect
and self-radiation of the thermal camera (FLIR A325sc)
are calibrated and removed from data in Extended Data
Fig. 9b before TeX decomposition. In HADAR TeX de-
composition, two materials are identified automatically
and temperature is estimated accordingly, revealing an
otherwise hidden HADAR alphabet pattern.

In statistical analysis (Extended Data Fig. 9e-f, based
on Nicolet iS50), response curve and environmental radi-
ation are calibrated, in addition to the dark noise caused
by device’s self radiation, before experiments. After cali-
bration, 20 measurements are taken for each of 16 heating
powers. Conventional thermal imaging with default emis-
sivity (e = 0.95) severely deviates from the ground truth
obtained by the thermocouple. Manually input emissiv-
ity is calibrated at the lowest heating power, but this ap-
proach also deviates as the heating power increases, since
the calibration is inaccurate once again caused by ther-
mal camouflage. These issues are overcome with HADAR
thermography which estimates temperature unbiasedly.
We note that the root-mean-square-error (RMSE) beats
both infrared as well as contact thermography. This is
not surprising as even contact thermography using ther-
mocouples have inevitable errors arising from noisy phys-
ical contacts.

The temperature difference between tumor cells and
regular cells in skin cancer could be as high as 0.25 C◦.
However, the signal captured by a thermal camera is the
radiance S that includes scattering contributions from
the environment (X) along with direct emission from the
tumor cells. Having a hot object (other people, instru-
ments) in the patient room (or, considering X or not)
makes a striking difference in estimated temperatures.
As an example, the emissivity of skin can be well ap-
proximated as a constant of 0.95, and we assume that
the environment is a blackbody (X = B) to approxi-
mately see the errors arising from ignoring the environ-
ment. The presence/absence of X is equivalent to a 5%
relative difference of B(T ), which corresponds to 3 C◦

temperature variation around the standard 37 C◦ tem-
perature. This error arising from ignoring the environ-
mental signal is much larger than the temperature dif-
ference caused by tumor cells. To minimize this effect,
accurate thermography is limited to ‘either an open-area,
outdoor environment under clear sky (cloud free), or us-
ing a cold-plate setup’, which restricts the indoor appli-
cations for fever surveillance. Since TeX vision decom-

poses S, HADAR can reach the Cramér-Rao bound of
temperature by properly estimating e and X and hence
is promising for reliable skin cancer detection.
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b Forward rendering

2 ҧ𝑆𝛽𝑣 ≡ 1 − 𝑒𝑣 𝑚𝛽 ⋅ Σ𝛾𝑉𝛽𝛾 ҧ𝑆𝛾𝑣 , 𝛽 ≠ sky

3 ത𝑋𝛼𝑣 ≡ Σ𝛽𝑉𝛼𝛽 ҧ𝑆𝛽𝑣

1 ҧ𝑆𝛾𝑣 ≡ ቊ
𝑆𝛽𝜈|𝛽=𝛾 , 𝛾 = sky

0, otherwise

4 𝑋𝛼 ≡ Σ𝜈 ത𝑋𝛼𝑣 ⨁ res

Forward texture distillation procedures:
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ሚ𝑆𝛼𝑣 = 𝑒𝑣 𝑚𝛼 𝐵𝑣 𝑇𝛼
+ 1 − 𝑒𝑣 𝑚𝛼 𝑋𝛼𝑣

Physics-based loss

res = ሚ𝑆𝛼𝑣 − 𝑆𝛼𝑣

(Output)

TeX vision

Conv

+

+

+
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Res-3
Spectral 

attention 

Res-4

Feature

pyramid

attention 
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Spectral 

attention 
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attention 

𝑉1,2,…,𝑘(𝑥, 𝑦)

a Inverse decomposition

𝑇𝛼

𝑒 𝑚𝛼

(See b)

Environment

𝑿𝜶𝒗Unwanted 

Sky

Sensor

Target

Mimicking 

daylight signal

Extended Data Fig. 1. HADAR TeX vision algorithms. a, Architecture of our TeX-Net for inverse TeX decomposition. TeX-
Net is physics-inspired for three aspects. Firstly, TeX decomposition of heat cubes relies on both spatial patterns and spectral
thermal signatures. This inspires the adoption of spectral and pyramid (spatial) attention layers [40] in the UNet model.
Secondly, due to TeX degeneracy, the mathematical structure, Xαν =

∑
β VαβSβν , has to be specified to ensure the uniqueness

of inverse mapping, and hence it is essential to learn thermal lighting factors V instead of texture X. That is, TeX-Net cannot
be trained end-to-end. Here, α, β, and γ are indices of objects, and ν is the wavenumber. Xα is constructed with V and
Sβν indirectly, where Sβν is the down-sampled Sαν to approximate k most significant environmental objects. Thirdly, the
material library M and its dimension are key to the network. TeX-Net can either be trained with ground truth T , m, and V in
supervised learning, or alternatively, with material library M, Planck’s law Bν(Tα), and the mathematical structure of Xαν in
unsupervised learning. In supervised learning, the loss function is a combination of individual losses with regularization hyper-
parameters. In unsupervised learning, the loss function defined on the re-constructed heat cube is based on physics models of
the heat signal. In practice, a hybrid loss function with T, e, V contributions (50%) in addition to the physics-based loss (50%)
is used. In this work, we have also proposed a non-machine-learning approach, the TeX-SGD (Semi-Global Decomposition),
to generate TeX vision. TeX-SGD decomposes TeX pixel per pixel, based on the physics loss and a smoothness constraint,
see Sec. SIIIA-B of the Supple. Info. for more details. Res-1/2/3/4 are ResNet50 with downsampling. The plus symbol is
addition operation followed by upsampling. b, Texture distillation reconstructs the part of scattered signal that originates
only from sky illuminations. The texture distillation process is to mimic daylight signal as X to form TeX vision, and it is
done by evaluating the HADAR constitutive equation in a forward way, with the physical attributes solved out in TeX-SGD
or TeX-Net. It removes the unwanted effect of other environmental objects being the light source which is unfamiliar in daily
experience. The process can be described in 4 steps. Here, step (1) is the initialization that keeps only the sky illumination on
and turns other radiations off. Step (2) is the iterative HADAR constitutive equation without direct emission. Evaluating it
multiple times gives the multiple scattering effect. Note that the ground truth texture partly remains in the physics-based loss,
res, due to cutoffs on scattering and/or number of environmental objects. The final estimated texture in step (4) is a fusion of
distilled scattered signal X̄αν and the physics-based loss res. Arrows in (b) indicate thermal radiation emitted/scattered along
the arrow direction. The TeX-Net code, pre-trained weights, and a sample implementation of texture distillation is available
at https://github.com/FanglinBao/HADAR.

https://github.com/FanglinBao/HADAR
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Extended Data Fig. 2. HADAR database and demonstrated TeX vision show that HADAR overcomes the ghosting effect in
traditional thermal vision and sees through the darkness as if it were day. TeX vision (color hue H = material e; saturation
S = temperature T ; brightness V = texture X) provides intrinsic attributes and enhanced textures of the scene to enable
comprehensive understanding. Our HADAR database consists of 11 dissimilar night scenes covering most common road
conditions that HADAR may find applications in. Particularly, the indoor scene is designed for robot helpers in smart home
applications, while others are for various self-driving applications. Scene-11 is a real-world off-road scene and shall be shown in
Extended Data Fig. 3. The database is a long-wave infrared stereo-hyperspectral database with crowded (e.g., Crowded street)
and complicated (e.g., Forest) scenes, having multiple frames per scene and 30 different kinds of materials. The database is
available at https://github.com/FanglinBao/HADAR. See Fig. S18 in the Supple. Info. for the TeX-Net performance on the
HADAR database.

https://github.com/FanglinBao/HADAR
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a Ghosting thermal vision at night (real world)

b TeX vision at night (TeX-Net, this work)

c TeX vision at night (TeX-SGD, this work)

d RGB vision in daylight

Extended Data Fig. 3. HADAR TeX vision demonstrated in real-world experiments (Scene-11 of the HADAR database)
overcomes the ghosting effect in traditional thermal vision and sees through the darkness as if it were day. Here, TeX vision
was generated by both TeX-Net and TeX-SGD (semi-global decomposition) for comparison. We used a semantic library instead
of the exact material library for the TeX vision, see Sec. SVC of the Supple. Info. for more details. The semantic library
consists of tree (brown), vegetation (green), soil (yellow), water (blue), metal (purple), and concrete (chartreuse). Water gives
mirror images of trees and part of the sky beyond the view. Most of the water pixels can be correctly estimated as ‘water’,
except for a small portion corresponding to sky image that has been estimated as ‘metal’, since metal also reflects the sky signal.
TeX-Net utilizes both spatial information and spectral information for TeX decomposition, and hence its TeX vision is spatially
smoother. In contrast, TeX-SGD mainly makes use of spectral information and decomposes TeX pixel per pixel. Compared
with TeX-Net, we observed that TeX-SGD is better at material identification and texture recovery for fine structures, such as,
bridge fence, bark wrinkles, and culverts. Note that the current TeX-Net was trained partially with TeX-SGD outputs. The
above observations are not used to claim performance ranking between TeX-SGD and TeX-Net. Both TeX-Net and TeX-SGD
confirm that HADAR TeX vision has achieved a semantic understanding of the night scene with enhanced textures comparable
to RGB vision in daylight.
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Extended Data Fig. 4. HADAR TeX vision recovers textures and overcomes the ghosting effect. Here, TeX vision is generated
by TeX-SGD (semi-global decomposition). From right to left are TeX/thermal/TeX/thermal vision of an off-road night scene
at two different positions. HADAR recovers fine textures such as water ripples, bark wrinkles, culverts, in addition to the great
details of the grass lawn. The HADAR prototype-2 sensor is a focal plane array focusing at infinity. Close objects exhibit focus
blur, while distant objects are beyond the spatial resolution to show fine details. Therefore, fine textures are mostly observed
in a certain distance range.
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a Raw thermal vision (ghosting effect)

c HADAR TeX vision

b Enhanced thermal vision in pseudo color (state-of-the-art)

Extended Data Fig. 5. HADAR TeX vision overcomes the ghosting effect in traditional thermal vision and beats state-of-the-art
approach to enhance visual contrast. This scene consists of multiple humans (dark red in TeX vision), robots (purple), cars
and buildings at a summer night. Geometric textures of the road and pavements are vivid in TeX vision but invisible in raw
thermal vision and poor in enhanced thermal vision. The mean texture density (standard deviation, see Sec. SIID of the Supple.
Info. for more details) in TeX vision is 0.0788, about 4.6 folds more than the texture density of 0.0170 in the state-of-the-art
enhanced thermal vision. This scene is the Street-Long-Animation in the HADAR database.
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a b

Human

Marble

Paint

Silica

Aluminum

Brick

Extended Data Fig. 6. HADAR estimation theory for multi-material library. a, Sample incident spectra of 5 materials generated
by Monte Carlo simulations. T = 60 C◦, T0 = 20 C◦ and V0 = 0.5. b, Minimum statistical distance of each material. Spectra
of silica and paint have non-trivial features that are distinct with other materials in the library. Statistical distance larger
than 1 (dashed line) consistently indicates that silica and paint are identifiable. Note that aluminum is similar to human skin
under TeX degeneracy and non-identifiable, as discussed in Fig. 3, even though with the same temperature its spectrum is
much weaker than human skin. Emissivity of human skin was approximated as a constant 0.95. Other emissivity profiles
were drawn from NASA JPL ECOSTRESS spectral library. This figure intuitively shows that HADAR identifiability based on
semantic/statistical distance is an effective figure of merit to describe identifiability. For more details in generalizing HADAR
estimation theory to multiple materials, see Sec. SIIB of the Supple. Info.
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Human

0.48

Thermal detection

Robot

0.76
Human

0.52

HADAR detection

HADAR people detection on ‘human’ region HADAR robot detection on ‘aluminum’ region

c d

ba

Extended Data Fig. 7. HADAR detection (TeX vision + AI) beats widely used state-of-the-art thermal detection (conven-
tional thermal vision + AI). a, Human body detection results based on thermal imaging. b, Human and robot identifi-
cation results based on HADAR. Detection is performed by thermal-YOLO (YOLO-v5 fine tuned on the thermal automa-
tive dataset, https://github.com/MAli-Farooq/Thermal-YOLO-And-Model-Optimization-Using-TensorFlowLite), with de-
tection score/confidence shown together with the bounding box. Due to TeX degeneracy and the ghosting effect, human body,
robot (aluminum at 72.5 C◦), and the car (paint at 37 C◦) emit similar amount of thermal radiation, and hence the human
body visually merges into the car in thermal imaging while the robot is mis-recognized as a human body. With our proposed
TeX vision which captures intrinsic attributes, HADAR can distinguish them clearly and yield correct detection. Explicitly, we
first extract the material regions corresponding to human (c) and robot (d), and then we perform people detection individually,
and at last we combine detection results together to form the final HADAR detection (b). We observed that the above results
showing the advantage of HADAR TeX vision vs. thermal vision is robust and independent of the AI algorithms. Standard
computer vision toolbox (People detector in Matlab R2021b) also confirms the results. We also observed that HADAR detec-
tion is robust against wrong material predictions, even though few road pixels under the car and around the human leg are
predicted as ‘aluminum’ in (b) and (d).

https://github.com/MAli-Farooq/Thermal-YOLO-And-Model-Optimization-Using-TensorFlowLite
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a Thermal vision + AI (state-of-the-art)

c Ground truth HADAR material map e(m)

Road

Pavement

Car

Human

Robot

Building

Sky

b HADAR semantics (this work)

d Ground truth semantics

mIoU % Human Robot Car Road Pavement Building Sky

Thermal vision + AI 33 0 90 67 25 69 16

TeX vision + non-AI 94 84 98 92 87 84 90

mIoU % Road Obstacles Water Vegetation

Thermal vision + AI 0.0 0.4 0 0

TeX vision + non-AI 77.4 66.4 89.7 90.0

e HADAR TeX vision

f Thermal vision + AI (state-of-the-art)

g HADAR semantics (this work)

h Ground truth semantics

Road

Obstacles

Water

Vegetation

Extended Data Fig. 8. HADAR physics-driven semantic segmentation beats state-of-the-art vision-driven semantic segmenta-
tion (thermal vision + AI). a, Thermal semantic segmentation with DANet (pre-trained on the Cityscapes dataset) [43]. b,
HADAR semantic segmentation transformed from the material map in estimated TeX vision. c, Ground truth material map in
the ground truth TeX vision. d, Semantic segmentation transformed from (c) to approximate the ground truth segmentation,
see Sec.SIIIE of the Supple. Info. for more details of the non-machine-learning transformation. Statistics in the upper table
were done on the first 4 on-road scenes in the HADAR database with 5-fold cross validation. (e-h) and the lower table show
the typical performance comparison between HADAR vs. thermal semantics, where the off-road scene is beyond DANet’s
training set. We have also observed consistent results on other non-city scenes in the HADAR database (not shown). This
real-world off-road scene is a general example to show the importance of material fingerprint in detection/segmentation. Since
AI enhancement is only used in thermal semantics, the advantage of HADAR semantics is clearly from TeX vision with physical
attributes. In the future, learning-based approaches to convert material map to semantic segmentation with the help of spatial
information may further improve HADAR semantics. mIoU: Pixel-wise mean intersection over union. Ground truths of the
real-world scene were manually annotated.
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Extended Data Fig. 9. Unmanned HADAR thermography reaching the Cramér-Rao bound (CRB). By exploiting spectral
information and automatically identifying the target, HADAR maximizes temperature accuracy beyond traditional methods.
Demonstrated in a-d is a HADAR alphabet sample made of plastics at 312.15 K on an unpolished silicon wafer at 317.15 K. a,
Optical image. b, Thermograph using FLIR A325sc shows camouflage and lack of information. c, HADAR material readout.
d, HADAR temperature read-out. b and d share the same colorbar clearly demonstrating the HADAR advantage. Shown in e-f
is the measurement of a uniform n-type SiC sample kept on a heating plate with varying heating power. e, Mean temperature
readout shows HADAR is unbiased and beats commercial infrared thermograph. f, Root-Mean-Square-Error shows HADAR
reaches the CRB for the given detector and imaging system. HADAR also beats commercial thermocouple in precision.
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Extended Data Fig. 10. Prototype HADAR calibration and data collection. a, Experimental setup of our HADAR prototype-I.
b-c, 3D schematics of our prototype HADAR. In our prototype HADAR, we used a sturdy stereo mount to take stereo heat-
cube pairs. d, Raw HADAR data with detector’s self radiation reflected by filters. e, HADAR signal calibrated with a uniform
reference object, to remove detector’s self radiation. For more details of calibration, see Sec.SIV of the Supple. Info.
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The proposed heat-assisted detection and ranging (HADAR) is a completely-passive re-

mote sensing technique. HADAR retrieves targets’ temperature (T ), material emissivity

(e), texture (X), and subsequently, semantics and distance, by collecting three-dimensional

hyperspectral data cubes in the thermal infrared spectrum, Ci(x, y, q), which we call heat

cubes. Here, C is the electronic output data (e.g., current, voltage, or photon counts) of the

detector, i indexes the heat cube from the i-th detector, q indexes the used filters (or the

spectral bands), and x and y are pixel coordinates on the image plane of the detector. This

supplementary information explains in detail what is recorded in heat cubes C, the theory

of thermal textures, the fundamental limits in estimating material (material classification,

semantic segmentation) and distance (ranging), explicit inverse algorithms used in solving

TeX from C, hardware calibrations, and prototype HADAR experimental details.

SI. HEAT SIGNAL AND HEAT CUBES

Denoting S the thermal radiation (heat signal) of an object, this section shows the math-

ematical model of S and how it is recorded in heat cubes C. Fig. S1 is a comprehensive

summary of the explicit models of heat cubes with various hyper-spectral/multi-spectral

(HS/MS) components and various detectors. Based on these diverse models, Fig. S2 shows

the unified model of heat cubes with input heat signal S. The following subsections will

explain heat signals, imaging systems and detectors separately, and then analyze thermal

textures.

A. Thermal radiation of the target and the environment

The implemented HADAR in this paper is based on traditional imaging system consist-

ing of focusing components like lens or parabolic mirrors, as shown in Fig. S3(a), but we

emphasize that HADAR could also apply to lensless imaging and doesn’t restrict itself in

the ray-optics regime. In traditional imaging systems, the scene of interest is mapped to

rasterized sensor pixel arrays. Each pixel focuses on a small object element, α = α(x, y),

with area Aα determined by the imaging resolution. The total heat flux leaving α along z

direction, as shown in Fig. S3(b), has two additive contributions,

Sαν(z̃) = eαν(z̃)Bν(Tα) +

∫
rαν(z̃, ρ̃)V̄αβSβν(ρ̃) dAβ, (S1)

4



𝑆𝛼𝑣 = 𝑒𝛼𝑣𝐵𝑣 𝑇𝛼 + 1− 𝑒𝛼𝑣 𝑋𝛼𝜈

Spectrum of mean incident photon flux to HADAR during time 𝜏𝑐 within bandwidth 𝛿𝑣

𝜆𝑣 = 𝜙𝑣 ⋅ 𝛿𝑣𝜏𝑐 = 𝜙𝑣/𝑐,

𝜏𝑐 ≡ 1/𝑐𝛿𝑣, 𝑎 = 𝑡/𝜏𝑐, 𝜙𝑣 = 𝑆𝑣 ⋅
𝜋𝐴𝑝

4 𝑓/𝐷 2 + 𝑓/𝑧 2
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Output counts

FIG. S1. Diverse models of heat cubes with various hyper-spectral/multi-spectral (HS/MS) com-

ponents and detectors. Left side from top to bottom is the signal flowing from the scene through

the aperture and optical components to the sensor. Right side gives the corresponding equations to

model each process. Definition of parameters is given in the shaded box. A full list of parameters

can be found in Fig. S2 and will be explained in the context. N : normal distribution. Cnn+a−1 is

the binomial coefficient. h: Planck’s constant. SPD: single-photon detector.

where the first term is direct thermal emission from α, and the second term is the environ-

mental emission from all other infinitesimal object elements β entering the detector after

scattering from α. Here, eαν is the spectral emissivity, a unique material signature. In

principle, eαν has angular dependence, determined by the local surface normal Ãα and the

observing direction z̃. Bν(Tα) is the blackbody radiation at temperature Tα, governed by

Planck’s law. rαν(z̃, ρ̃) is the reflectance distribution function with light passing from −ρ̃

to z̃ direction. V̄αβ =
F (−ρ̃·Ãβ)F (ρ̃·Ãα)

πρ2 is the differential view factor from β to α satisfying
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𝑆𝛼𝑣 = 𝑒𝛼𝑣𝐵𝑣 𝑇𝛼 + 1− 𝑒𝛼𝑣 𝑋𝛼𝜈
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𝜆𝑣 =
𝑆𝑣
𝑐
⋅

𝜋𝐴𝑝

4 𝑓/𝐷 2 + 𝑓/𝑧 2

𝜏𝑐 ≡ 1/𝑐𝛿𝑣, 𝑎 = 𝑡/𝜏𝑐,

Heat signal

𝑋𝛼𝜈 = 

𝛽≠𝛼

𝑉𝛼𝛽𝑆𝛽𝜈

Scene

Virtual aperture

HS/MS

component

Sensor

pixel

Imaging

component

H
A

D
A

R

Output spectrum for ‘filter/band’ q

Spectroscopy

𝜆𝑞𝑣 = 𝜂𝑣
o 𝒯𝑞𝑣 𝜆𝑣 − 𝐾𝑣 + 𝐾𝑣

for {𝑞1, 𝑞2,… , 𝑞𝑊}

Electronic signal 𝒞

𝒞𝑖(𝑥, 𝑦, 𝑞) = 

𝑣=𝑣min

𝑣max

𝑅𝑣 ⋅ 𝑛𝑞𝑣 + 𝜉

Detector

Actual photon number 𝑛 onto the sensor

during time 𝑡 within bandwidth 𝛿𝑣

𝒫𝑞𝑣 𝑛 = 𝐶𝑛+𝑎−1
𝑛

𝜆𝑞𝑣
𝑛

𝜆𝑞𝑣 + 1
𝑛+𝑎

𝑇 : Temperature of the target 𝛼

𝑒 : Spectral emissivity of the target 𝛼

𝑋 : Texture of the target 𝛼

𝑧 : Distance of the target 𝛼

𝑆 : Heat signal

𝜈 : Wave number

𝐵 : Blackbody radiation

𝑉 : Thermal lighting factor

𝑐 : Speed of light in vacuum

𝜆: Mean photon number in coherent time

𝜏𝑐 : Coherence time

𝛿𝜈 : Ultra fine bandwidth

𝑓 : Focal length

𝐷 : Aperture diameter

𝐴𝑝 : Pixel area

𝑡 : Measurement time

𝜂𝑜 : Optics efficiency

𝑊 : Number of bands/filters

𝐾𝑣 : Self emission of the sensor

might be zero if no back reflection

𝒯𝑞𝑣: Transmittance curve

becomes 𝛿𝑞𝑣 when using prisms etc.

𝑅𝑣 : Responsivity/quantum efficiency

𝜉 : Electronic noise with mean ҧ𝜉 and std 𝜎

𝒫𝑞𝑣: Photon statistics

𝐶𝑛+𝑎−1
𝑛 : Binomial coefficient

𝑧

𝐷

𝑓

𝐴𝑝

FIG. S2. The unified model of heat cubes C with input heat signal S. Left side from top to bottom

is the signal flowing from the scene through the aperture and optical components to the sensor.

Right side gives the corresponding equations to model each process.

∫
V̄αβ dAβ = 1. The integral

∫
· dAβ is over all the emitting surfaces in the entire scene, and

F (x) ≡ max(0, x). Eq. (S1) is consistent with the rendering equation in computer graphics

to simulate real-world scenes.

For most natural objects with rough surfaces, the angular dependence of eαν can be

ignored, and the Lambertian (diffusive) reflectance applies, i.e., rαν is also angular indepen-

dent. Furthermore, Kirchhoff’s law implies that rαν = 1 − eαν , and hence the heat signal

leaving α reduces to

Sαν = eανBν(Tα) + [1− eαν ]Xαν , (S2)
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𝛼
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FIG. S3. a, Schematic of the HADAR imaging. One sensor pixel of the detector focuses on a

small object element, and environment radiation can only be collected through scattering off the

object element. b, Mathematical model of the scattering process. Target element of area Aα with

emissivity eα is at a distance of z away from the detector with aperture Ad. A small area of the

environment Aβ with emissivity eβ is at a distance of ρ away from the target. c-e, Illustrations

of the thermal lighting factor V . c, V = 0, no emitting environment on the detector side, i.e., no

radiation can be scattered into the detector by the target. d, 0 < V < 1, a fraction of environment

emits on the detector side. e, V = 1, the target is fully surrounded by emitting environment on

the detector side.

with

Xαν =
∑
β 6=α

VαβSβν , (S3)

and Vαβ =
∫
β
V̄ασ dAσ. By integrating the differential view factor over uniform objects, the

scattering term in Eq. (S1) simplifies to a summation over compact objects in Eq. (S3).

Hereafter, we denote β a uniform and compact object with finite size in the scene. Now, the

normalization condition becomes
∑

β Vαβ = 1. Conventionally, Vαβ is called the view factor

in radiative heat transfer. In our scenario, it depicts the fraction of thermal illumination

from a finite object β that can be scattered by object α into the detector, and hence we

call it the thermal lighting factor in the paper, to be more intuitive. Since V captures the

local surface normal, X in Eq. (S3) carries the geometric surface texture of object α under
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thermal illumination of its environment. X will be further discussed in Sec.SID.

Heat signal Sαν given by iterative equations (S2) and (S3) is an infinite series, consisting

of multiple scattering contributions. To better illustrate the multiple scattering process

and the concept of thermal lighting factor, we show a simpler example of only one uniform

environmental object (V < 1, the rest of the environment is deep space). In this case,

S1ν = e1νBν(T1) + [1− e1ν ]V10e0νBν(T0) + [1− e1ν ]V10[1− e0ν ]V01e1νBν(T1) + · · · , (S4)

where

V10 =
1

πA1

F (−ρ̃ · ~A0)F (ρ̃ · ~A1)

ρ2
, (S5)

V01 =
1

πA0

F (−ρ̃ · ~A0)F (ρ̃ · ~A1)

ρ2
. (S6)

In Eq. (S4), the 0-th order term is the radiation directly from the target, the 1-st order

term is the radiation emitted by the environment and scattered by the target, the 2-nd

order term is the radiation emitted by the target, scattered by the environment back to the

target again, and then scattered by the target, and so forth for higher order terms. Some

examples of V10 are visualized in Fig. S3(c-e). Worth noting is that, in computer graphics,

a truncation to multiple scattering at l-th order (i.e., each light ray is bounced at most l

times, l = 4 ∼ 8) is sufficient to render high-quality and vivid movies. Besides, usually a

few objects dominate in the scattering contribution, such as, sky, ground, and buildings. To

give a quantitative intuition, we take an example of a pedestrian standing 5 m away from

a car. The thermal lighting factor of the pedestrian on the car is V ≤ 1
25π
≈ 0.0127, while

the thermal lighting factor of the ground/sky on the car is about 0.5. With finite number of

objects and bounces, it becomes possible to solve temperature T and thermal lighting factor

V , and classify materials eν , from observed heat signal Sν .

B. Hyperspectral imaging

In acquiring hyperspectral data cubes, imaging systems considered in this paper consist of

wavefront modulation optical components for focusing (e.g., lens or parabolic mirrors), and

wavelength modulation optical components to retrieve spectral information (e.g., diffraction

gratings, dispersive prisms, filters or interferometers). In such systems as shown in Fig. S2,
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the mean photon number of the heat signal input to HADAR, λν , is connected to the heat

flux per unit area per unit solid angle per wave number, Sν , by the following relation,

λν = Sν × τcδν ×
πAp

4(f/D)2 + (f/z)2
=
Sν
c

πAp

4(f/D)2 + (f/z)2
, (S7)

where δν is the bandwidth, τc ≡ 1/cδν is the coherence time, c is the speed of light in

vacuum, f is the focal length, Ap is the pixel area, and the multiplication factor in the right-

hand side of the above equation is the target area Aα times the integral of the solid angle of

the aperture with respect to the target element. It gives the fraction of signal emitted by the

target that is collected by the pixel. When the distance z is much larger than the aperture

D, z � D, the f-number (f/D) dominates in the denominator, and the factor is proportional

to AαD
2/z2, according to the ray-optics geometry relation Aα/z

2 = Ap/f
2. In the opposite

limit when z � D, the factor reduces to πAα. For clarify, We have suppressed the subscript

of α or (x, y) wherever there is no risk of confusion. When the measurement/integration

time is t, a ≡ t/τc, the mean photon number is simply given by Nν ≡ aλν .

When a set of filters is used for spectrum reconstruction, the mean photon number

reaching the sensor is

λqν = ηo
ν [Tqνλν +RqνKν + EqνFν ] , (S8)

where ηo
ν is the optics efficiency accounting for the transmittance of optical components like

lens. Tqν is the transmittance curve, Rqν is the reflectance curve, and Eqν is the absorptance

curve of the q-th filter, satisfying Tqν +Rqν + Eqν = 1. Kν is the self-emission spectrum of

the sensor, and Fν is the self-emission spectrum of the filter. Under the assumption that

either Eqν → 0 or Fν ≈ Kν , the above equation can be simplified as

λqν = ηo
ν [Tqν(λν −Kν) +Kν ] . (S9)

Eq. (S9) can be generalized to interferometer-based spectroscopy when the back reflection of

the interferometer is significant. The fact that λν −Kν is encoded by filters/interferometers

in the experimental data makes the back reflection K play a role of ‘negative’ dark noise,

as observed in Ref. [1] and also discussed here in Sec. SVI.

Parameters of imaging systems used in this paper are summarized in Tab. S1. Parameters

of detectors are explained in the following subsection. Filter characterization is given in

Sec. SIV
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Imaging system Optics efficiency ηo
ν Focal length f (mm) f-number (f/D)

iS50 90% 128.0 2.5

A325sc 99% 18.0 1.3

TABLE S1. Specifications for imaging systems used in this paper. iS50: Nicolet iS50 Fourier-

transform infrared spectrometer. A325sc: FLIR A325sc thermal camera. D: diameter of the

aperture.

C. Detectors and recorded signals

Actual recorded signal about the thermal radiation spectrum depends on specific detec-

tors.

Existing infrared intensity detectors which respond to light field intensity are mainly

based on thermal effect or photodiodes. The former absorbs thermal radiation and converts

it into temperature change of the sensor, while the latter absorbs thermal radiation and

generates electron-hole pairs. Their recorded signals, despite diverse readout mechanisms

[e.g., for thermal effect: temperature-dependent resistance (bolometers/microbolometers),

thermal-electric effect (thermocouples or thermopiles), thermal expansion (Golay cells). For

photodiodes: photovoltaic mode, photoconductive mode, avalanche mode] or sensor ma-

terials [e.g., Vanadium oxide (VOx), silicon, Mercury Cadmium Telluride (MCT), Indium

Gallium Arsenide (InGaAs)], all suffer from inherent electronic noise (Johnson-Nyquist noise,

Flicker noise, etc.). When considering signal-to-noise ratio (SNR), it is always convenient

to map the electronic noise to the signal side and define noise-equivalent power (NEP). This

is simply to rewrite
∑

ν Rνnqν + ξ in Fig. S2 as R̄(nq + ξ/R̄), where nq =
∑

ν nqν is the

total photon number, R̄ = (
∑

ν Rνnqν)/nq is the mean responsivity, and ξ/R̄ is the noise-

equivalent power in photon number. Hereafter, we denote ξ/R̄ as ξ for simplicity, and the

heat cube becomes

Cq = R̄(nq + ξ). (S10)

For comprehensive modelling, it’s worth stressing that spectral quantum efficiency and read-

out/gain noise of the photodetector is usually packaged in NEP, or noise-equivalent tem-

perature difference (NETD), or the special detectivity D∗. The response time ∆t as well as

the pixel size Ap shall be specified later. Within the scope of this paper, the actual value of
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gain factor or responsitivity of the detector R̄ is irrelevant, and hence we will focus on nq +ξ

instead of Cq when talking about heat cubes hereafter. Nonlinearity is further assumed to

be negligible.

Single photon detector is also being pushed to work in the thermal radiation spectrum of

interest, typically 715 ∼ 1250 cm−1 (or equivalently 8 ∼ 14 µm). Superconducting nanowire

single photon detector (SNSPD) is especially promising for long-wave infrared detection due

to low Cooper-pair bond energy (∼meV). WSi-based SNSPD has been demonstrated to be

able to operate at 1 ∼ 7 µm recently [2, 3], with high quantum efficiency (93%) and low dark

count rate (< 1 cps). In the foreseeable future, single-photon level heat signal resolution for

the desired heat spectrum is becoming possible.

As an ideal case, photon-number-resolving detectors (PNRDs), with perfect quantum ef-

ficiency and absolutely zero dark or electronic noise, record the exact photon number hitting

the sensor, putting a fundamental shot-noise limit to the maximum amount of information

one can retrieve from heat signal.

Here we discuss existing intensity detectors, in comparison with ideal detectors. For

convenience, the following contents related to radiation power shall be discussed in terms

of photon number instead of field intensity. All discussions would also apply to intensity

detectors when photon number equivalent to the given intensity is considered. As a proba-

bilistic problem, the actual photon number hitting the detector fluctuates around the mean

photon number in Eq. (S9). Within a narrow band ∆ν and the coherent time τc, thermal

photon statistics is known to obey the Bose-Einstein distribution which suggests that the

probability of registering n photons is given by [4]

Pqν(n) =
λnqν

(λqν + 1)n+1
. (S11)

In common cases of HADAR applications, the spectral bandwidth is ∆ν > 1 cm−1 within

the heat spectrum. The corresponding coherence time is hence below 33 ps. During an

integration time t (whose minimum is determined by the response time ∆t of the detector)

longer than the coherence time, t = aτc, the probability of registering n photons can be

solved out as a typical ‘n identical balls in a identical boxes’ problem, which yields a negative

binomial distribution,

Pqν(n) = Cn
n+a−1

λnqν
(λqν + 1)n+a

, (S12)
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where Cn
n+a−1 ≡ Γ(n + a)/Γ(n + 1)Γ(a) is the binomial coefficient. For intensity detectors,

a� 1 and Nqν ≡ aλqν � 1 hold, and hence an asymptotic approximation follows if λqν � 1,

Pqν(n) ≈ Pois(n;Nqν) ≈ N (n;Nqν , Nqν), (S13)

where N is the Gaussian distribution. The probability of observing nq with filter/band

q is generally the convolution of Pqν for all wave numbers. Under the above asymptotic

approximation, it can be given by

Pq(n) = N (n;Nq, Nq), (S14)

where Nq ≡
∑

ν Nqν . Approximating the noise-equivalent photon number ξ by a Gaussian

distribution of mean ξ̄ and variance σ2, N (ξ; ξ̄, σ2), one readily has the combined distribution

for n← nq + ξ,

P̄q(n) =
n∑
i=0

Pq(i)N (n− i; ξ̄, σ2) = N (n;Nq + ξ̄, Nq + σ2). (S15)

Actually, Johnson-Nyquist noise and Flicker noise are known to obey Gaussian distri-

bution at one time instant. In general, the variance is their sum σ2 = σ2
J + σ2

F. White or

pink noise spectrum indicates how noise evolves in time, and this is taken into account by

the following scaling law. Define N ≡
∑

ν Nν ≡
∑

ν aλν as the total input photon number

through the aperture of HADAR. For the signal itself, N ∝ a ∝ t. For Johnson-Nyquist

noise, σJ ∝
√
t, while for the Flicker noise, σF ∝ t. We define γ ≡ σ2/N as the ratio of

the electronic noise power to the shot-noise power (normalized electronic noise power). It

follows that γ = γ0 + γ1N , where γ0 = σ2
J/N and γ1 = σ2

F/N
2 are constants independent of

time. In comparison, SNR is defined as Nq/σ. One can readily verify that it’s possible to im-

prove SNR by long-time integration for Johnson-Nyquist noise, while it’s not the case for the

Flicker noise. After all, the joint probability for a measured spectrum, n ≡ [n(q1), n(q2), · · · ],

to be occurring is

P(n) =
∏
q

P̄q(n). (S16)

Specific parameters for mentioned detectors in this paper are given in Tab. S2. Since

quantum efficiency for state-of-the-art intensity detectors can easily reach over 50% [5] and

is not the main restriction of HADAR, we assumed all quantum efficiency to be unity. The

mean and std of the electronic noise are evaluated at the input of the detector, in terms
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Detector D∗(cm·
√

Hz/W)

NETD

(mK)

√
Ap

(µm)

∆t

(µs)

ξ̄

(count)

σ

(count)

γ

MCT 4.70e10 / 1000 2.86 -1.46e8 4.53e4 /

µ-bolometer / 47.80 12 12000 1.15e9 1.77e6 6.68e5

PNRD / / / / 0 0 0

TABLE S2. Detector specifications. MCT: liquid-Nitrogen cooled MCT detector for Nicolet iS50

Fourier-transform infrared spectrometer. See Ref. [1] for negative dark noise ξ̄. µ-bolometer:

uncooled microbolometer detector for FLIR A325sc thermal camera. PNRD: photon-number-

resolving detector. D∗: special detectivity. NETD: noise-equivalent temperature difference.
√
Ap:

pixel size. ∆t: time constant. σ: std of noise-equivalent photon number. γ: the electronic noise

power normalized by the shot-noise power. γ of the FLIR camera is modelled as if it is measuring

the radiance per band for each of 536 bands in the 715 ∼ 1250 cm−1 spectral range.

of noise-equivalent photon number within the heat spectrum 715 ∼ 1250 cm−1. The FLIR

camera is evaluated at 30 C◦, and we use γ0 = γ1N = γ/2 at the given time constant, as

approximated from experimental characterization. The FTIR spectroscopy is evaluated as

a whole ‘device’ since the MCT detector is integrated inside. Accordingly, noise parameters

of FTIR are evaluated as if FTIR was measuring spectrum band by band. In this sense,

the back reflection of the sensor’s emission Kν in Eq. (S9) plays the role of dark noise,

ξ̄ = −
∑

ν Kν , which becomes negative. Experimental characterization reveals that the

electronic noise of FTIR is purely Johnson-Nyquist noise. When compared with realistic

detectors, corresponding ideal detectors take ξ̄ = 0, and σ = 0, with all other parameters

matched.

D. Thermal textures and the TeX vision

For a well-calibrated detector with uniform responsivity/gain and dark noise across the

pixel array, the spatial variation in its recorded image C(x, y) is, on average, from the
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variation of Sα with respect to α. According to Eq. (S2), we have

δSαν = δTα · eαν∂TBν

+ δeαν · [Bν(Tα)−Xαν ]

+ δXαν · (1− eαν).

(S17)

The above equation explains the origin of thermal textures (the spatial variation in heat

signals). Explicitly, there are 3 types of thermal textures. The first line in Eq. (S17) is from

the temperature contrast, called the T-type thermal texture. The second line is from non-

uniform material, called the e-type thermal texture. The third line carrying local surface

normals of the target, as mentioned in Sec. SIA, is called the X-type thermal texture. We

emphasize that T-type and e-type thermal textures might be significant near boundaries

of objects where temperature jump and material change occur, but they are usually weak

within uniform objects. Within uniform objects, it is the X-type thermal texture that

captures the conventional geometric texture and visual details of the object. These origins

of textures also apply to optical imaging under solar illumination, where the T-type texture

is negligible and the e-type texture is caused by reflectivity contrast. In the visible-light

spectrum, the surface texture on a light bulb is a good example to understand the X-type

texture. Applying Eq. (S2) to imaging the surface of a bulb (uniform material, the bulb is

switched off, as shown in Fig.2 in the main text) under solar illumination, we know that

the direct emission (first term) is negligible and X is what is recorded in the image showing

the geometric texture of the bulb surface. Another common example is imaging a lawn in

daylight. Again, it is the X-type texture that gives the visual details of the lawn. Since it is

important but usually ignored in thermal imaging, we call the ‘X-type thermal texture’ the

‘texture’ in the main text for short.

Generally, what is captured by detectors is a mixture of all three types of thermal tex-

tures. In traditional thermal imaging, T-type thermal texture dominates, and e-type and

X-type textures are weak since eαν ≈ 1. This is why thermal imaging is widely taken as the

temperature contrast. T-type thermal texture could give the contour of objects that have

different temperature with the background but is poor in details, exhibiting the ‘ghosting

effect’. In optical imaging under solar illumination, only the scattering term (1− eαν)Xαν in

Eq. (S2) is recorded. Existing object detection, semantic segmentation and stereo depth es-

timation based on optical images, make use of the e-type and X-type textures. Therefore, to
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overcome the ‘ghosting effect’ in thermal imaging and implement HADAR with comparable

performance to optical detection and ranging, the key is recovering and enhancing e-type

and X-type textures in the scattering term (1−eαν)Xαν , with the help of spectral resolution.

However, we remind that materials’ response to light (spectral features of emissivity) in the

visible-light spectrum is different with that in the thermal infrared spectrum. Furthermore,

the wavelength of the thermal infrared is around one order in magnitude larger than that of

the visible light. They also result in different textures in thermal images and optical images.

We further discuss the structure of X in two different aspects. (1), According to Eq. (S3),

we have, δX = ΣδV · S + ΣV · δS. The first term depending on local surface normals is

the geometric texture. The second term depending on different environmental illuminations

is commonly seen in mirror images formed on a flat surface. (2), X contains the scattered

signal originated from all environmental objects. However, in daily experience, people are

familiar with the part of scattered signal, denoted as X̄, that is originated only from the

sky illumination. The process to reconstruct X̄ from X is shown in Extended Data Fig. 1b.

In the simple example of imaging a light bulb mentioned above, where there is no other

environmental objects than the sky, X̄ is exactly the same as X. For the simple car-

pedestrian scene in Fig. 4 in the main text, the synthesized ground has a very limited size

and the sky illumination is dominant in most part of the image, and hence X̄ is close to X.

In this paper, we will interchangeably use X̄ and X whenever possible, both implying the

distilled texture X̄ that people are familiar with.

Eq. (S2) and Eq. (S17) suggest a natural and physics-based TeX representation of the heat

signal, which we call TeX vision. Instead of the grayscale thermal vision representing the

integral
∫
Sν dν, or the multi-band representation showing three most significant components

(three spectral bands with least mutual information, or three principal components) of Sν

in RGB channels, TeX vision uses the HSV color format with mapping H = e, S = T and

V = X, and captures the full physics information in heat signal. TeX vision presents different

materials with different color hues, helpful for semantic segmentations. Furthermore, TeX

vision encodes e-type and X-type textures in separate channels with temperature contrast,

allowing for visually-enhanced textures. It combines the textures in the scattering term

(used in optical imaging) and the temperature contrast (used in traditional thermal imaging),

providing a better application potential. Sec. SIIIC explicitly shows how a TeX vision image

is formed.
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c HADAR TeX vision

a Raw thermal vision

• T-type texture

• e-type texture

• X-type texture

b Enhanced thermal vision (state-of-the-art)

• T-type texture

• e-type texture

• X-type texture

• T-type texture

• e-type texture

• X-type texture

Residual textures

Poor visualization

AGC, pseudo-color, etc.

AGC on TeX

FIG. S4. Schematic diagram of texture flow from the scene to users. State-of-the-art thermal

vision enhances visual contrast by improving data visualization. In comparison, HADAR recovers

textures in the sensor data. As post-processing like FLIR AGC (automatic gain control, a variant

of the histogram equalization algorithm) cannot increase information, HADAR improving data

collection has better fundamental potentials than thermal imaging.

Now we explain four common channels where thermal textures can be lost. (1), TeX

degeneracy leads to the same amount of radiance S even with different T/e/X value config-

urations, as shown in Methods – TeX degeneracy; (2), Spectral integral
∫
Sν dν loses spectral

resolution and textures; (3), Weak textures will be buried by detector noise; and (4), Weak

textures will be further lost in finite bit depths of the detector’s readout circuit and numeric

round off error. One extra aspect that affects visual contrast is related to the visual response

and acuity of human eyes to different colors and intensities, or for artificial intelligence, the

different sensitivity to different colors/intensities determined by particular training datasets.

The texture flow in Fig. S4 summarizes the theory of thermal textures. Fig. S5 further il-

lustrates the difference of our HADAR approach against traditional approaches in texture

recovery. As an illustration, Fig. 4b in the main text shows the scattering signal at one single

wavenumber full of textures, while Fig. 4a shows thermal imaging losing texture through

channel (1).

With decluttered physical quantities, HADAR TeX vision provides a more promising

platform and more insightful data to artificial intelligence (AI) algorithms for detection and
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a Raw thermal vision

b Thermal vision with AGC

c Thermal vision with pseudo-coloring

d HADAR texture

FIG. S5. HADAR texture beats state-of-the-art approaches to improve visual contrast. State-of-

the-art approaches like FLIR AGC (automatic gain control, a variant of histogram equalization

algorithm) or pseudo coloring are nonlinear mapping of the raw data to grayscale or RGB data,

to better visualize the signal variation existed in data. They are post processing and cannot

add textures/information to data, well known as the Data Processing Inequality [6] — ‘post-

processing cannot increase information’. a-c, When texture is already lost in sensor data, state-

of-the-art approaches (post processing) cannot recover the texture. d, However, HADAR collects

hyperspectral data and has more texture/information in the sensor data, enabling recovery of

otherwise inaccessible textures.

ranging. The following overview summarizes the potential advantages of HADAR and TeX

vision against state-of-the-art AI-enhanced thermal sensing.
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Thermal sensing + AI

(dataset + AI algorithm)
Object detection Ranging

based on temperature† based on material based on temperature† based on texture

ASL-TID +

LatentSVM [25] / YOLO [26]
✔️ ❌ ❌ ❌

BU-TIV +

SDD-Net [31]
✔️ ❌ ❌ ❌

CVC-FIR +

YOLO [26] / 

LinSVM [27,28]
✔️ ❌ ❌ ❌

KAIST +

YOLO [26] /

AdaBoost [29]
✔️ ❌ ❌ ❌

LSI +

CNN [30]
✔️ ❌ ❌ ❌

LITIV [32] +

YOLO [26]
✔️ ❌ ❌ ❌

OSU-T +

YOLO [26] /

AdaBoost [33] /

SVM [38]

✔️ ❌ ❌ ❌

Terravic +

YOLO [26]
✔️ ❌ ❌ ❌

VOT-TIR [34] +

Multiple AI therein
✔️ ❌ ❌ ❌

TIDPD +

YOLO [35]
✔️ ❌ ❌ ❌

FLIR-ADAS +

CNN [36]
✔️ ❌ ❌ ❌

Tetra +

SVM [39]
✔️ ❌ ❌ ❌

Ref. [37] +

SVM
✔️ ❌ ❌ ❌

Ref. [40] +

SVM
✔️ ❌ ❌ ❌

CATS +

CNN [41]
✔️ ❌ poor ❌

HADAR (TeX + AI) ✔️ ✔️ ✔️ ✔️

TABLE S3. HADAR provides intrinsic physical attributes and enhanced textures enabling com-

prehensive understanding of the scene beyond AI-enhanced conventional thermal sensing. State-

of-the-art thermal imaging, even equipped with AI, is limited solely to night vision enhancement

without specificity or ranging accuracy. Identification based on material fingerprint is impossible

for thermal imaging due to TeX degeneracy, and thermal ranging has poor performance due to

the ghosting effect. HADAR with TeX vision can lead to improved AI performance, including

identification based on material fingerprint (Figs. 5, Extended Data Figs. 7-9), and enhanced rang-

ing based on recovered textures (Figs. 4 and 6, Fig. S19). †: Precisely, it’s radiance contrast in

thermal imaging. SVM: Support Vector Machine; CNN: Convolutional Neural Network; YOLO:

You-Only-Look-Once.
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SII. HADAR ESTIMATION THEORY I: FUNDAMENTAL LIMITS

With the theoretical model of heat signal given in the last section, here we focus on

fundamental limits of HADAR, mainly regarding material and depth resolution in detection

and ranging problems. For more details about the accuracy of temperature estimation, we

refer the readers to Ref. [7].

Recall that the heat signal leaving object α is Sαν = eανBν(Tα) + [1 − eαν ]Xαν , with

Xαν =
∑

β 6=α VαβSβν . Starting with Tα, eαν , and Vαβ for all compact and finite objects,

Monte Carlo path tracing can solve Sαν asymptotically with the l-th order scattering-cutoff

solution S̃lαν . The residual error δαl ≡ |S̃lαν − Sαν | → 0 when l increases. In the inverse

problem starting with Sαν for a few objects in a limited view of the entire scene, there are

infinite solutions due to the TeX degeneracy given in Methods Section – TeX degeneracy. To

break the TeX degeneracy, we assume that the spectral emissivities of objects in the scene are

standard and can be characterized by a material library, M = {eν(m)|m = 1, 2, · · · ,M}.

In this way, eαν is discretized into eν(mα) and the dimension of solution space has been

reduced significantly. This opportunity of dimensional reduction is available naturally in

smart applications where materials usually have industrial standards [8]. Moreover, usually

there are only a few giant and uniform objects (like sky, ground and buildings) that have

significant scattering contributions in Xαν , since the thermal lighting factor V for most

other details (tiny objects or non-uniformity) is negligibly small, as explained in Sec. SIA.

Let k denote the maximum number of significant environmental objects considered in the

scene, whose spectral emissivity must be one out of M curves in the library. Now, the

parameter set {klM} determines the complexity of the inverse problem and also controls

the accuracy of the solution of Tα, eν(mα) and Xαν . In the limit of k, l,M → ∞, the

potential TeX solution will converge to the ground truth, but the inverse problem will be

extremely complicated to solve. Traditional thermal imaging for autonomous navigation is

in the opposite limit, l = k = 0. As demonstrated in proof-of-concept experiments in this

paper, we have moved forward the first step to make k and l finite. The raw solution of

TeX with small {klM} values already shows the advantage of TeX vision against traditional

thermal vision and the advantage of HADAR against sonar, radar, LiDAR and cameras.

When considering the fundamental limit of material estimation, we demonstrate k = l = 1

in this paper (k = 1 means one environmental object plus the deep space of zero radiation).
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When processing HADAR prototype-1 experimental data, we have used k = 2 and l = 1

(k = 2 means two environmental objects without deep space). When processing HADAR

prototype-2 experimental data and our synthetic HADAR database, we have used k = 2

and l =∞, as shall be shown in Sec. SIII. The heat signal with k = l = 1 becomes

Sαν = eανBν(Tα) + [1− eαν ]VαBν(T0), (S18)

where ambient temperature T0 is assumed to be known (easy to measure).

A. Material estimation — two-material library

This subsection is devoted to addressing the question of how many photons are needed to

identify the target material. As opposed to continuous parameters like temperature whose

fundamental accuracy can be described by the variance of their estimator and given by the

Cramér-Rao bound, material in a library is a categorical/ordinal parameter, upon which

no variance can be defined. In fact, even if ordinal parameter is treated as a continuous

parameter with discretization constraint, constrained Cramér-Rao bound [9] will yield a

trivial bound (Var ≥ 0), and this implies one can never get an unbiased estimator for ordinal

parameters. To address the accuracy of categorical/ordinal parameter estimation, we first

start with the exact detection probability — the probability of predicting m when the ground

truth material index is m (also known as the recall, or true positive rate; here we adopt the

terminology as in Ref. [10]). The exact detection probability is analytically intractable, but

we provide the numeric algorithm for it. We then develop an effective analytical theory for

detection probability based on the Cramér-Rao bound of an auxiliary parameter. At last, we

derive the Shannon information about the material that we can retrieve from experimental

data. In the following contents, we assume the spectral resolution is obtained from dispersive

prisms or diffraction gratings with fine bandwidth, for simplicity. Therefore, subscript q is

identical to ν in Eq. (S16). However, we emphasize that the theory applies to filter-based

experiments as well.

Start with hyperspectral imaging (HSI) where a library of reflectance spectra for po-

tential materials, R = {rmν |m = 1, 2}, is available. In the W -dimensional Hilbert hy-

perspace RW where each axis represents the reflection signal at certain wave number,

r(νw), w = 1, 2, · · · ,W , the library R is a set of two isolated dots, as shown in Fig. S6a.
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FIG. S6. Hyperspace representation of (a) HSI data and material library and (b-c) HADAR heat

signal and material sheets. 2 out of W dimensions are shown for clarity. One material corresponds

to one unique dot for HSI, but evolves to the V -T surface (V not shown for clarity) for HADAR. Red

dot/curve: ground truth of the target material. Blue dot/curve: counterfactual target material.

Dashed curve: the equiprobable hypersurface (decision boundary) in which each point has the

same occurring probability for both materials. Red shaded spot represents probability distribution

of experimental data due to noise. Gray dashed arrow represents the auxiliary g direction. (d)

Probability distribution of signal along g direction.

The difference between two materials is characterized by the Euclidean distance of those two

dots [11, 12]. For a given target state (red dot), the recorded experimental data point may

distribute around with probability P given by Eq. (S16) [illustrated as the red shaded spot].

The probability of getting a correct material estimation (detection probability), based on
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experimental data point, can be given by the integral of the probability distribution of the

signal over the gray shaded area (true positive region). The boundary of the gray shaded

area is the equiprobable hypersurface (decision boundary, dashed line) in which each point

has the same occurring probability P for two possible states of the target. Put another way,

either the target is the red dot or the blue dot, the probability to observe a data point in

the hypersurface is the same. We emphasize that the equiprobable hypersurface might not

be identical to the mid-perpendicular (equidistant) plane, since the probability distribution

of signal is asymmetric along different axes.

Because temperature T and thermal lighting factor V are both unknown in HADAR, one

cannot directly get spectral emissivity curve out of Sαν in Eq. (S2). Instead, we have to

move to theW -dimensional Hilbert hyperspace RW where each axis represents the heat signal

n(νw), w = 1, 2, · · · ,W , as shown in Fig. S6b. Here, materials at fixed V and T are isolated

dots, but each material corresponds to one sheet of V -T surface given by Eq. (S18), and

generally different material surfaces might intersect. Since each possible target state {mTV }

will have a different probability to produce a given signal point, now we have a maximum

probability for each material to produce the given signal, where maximization is over T and

V . We can define equal-maximum-probability hypersurfaces (dashed curves) accordingly, in

which each point has the same maximum observation probability for both possible material

surfaces. For a given target state (red dot), the detection probability P , now has to be

integrated over irregular domains (gray shaded area). Assume, in a sufficiently wide domain

covering the red shaded spot, n(ν) is meshed into G grids, {n1(ν), n2(ν), · · · , nG(ν)}, and

outside the domain, the data probability distribution is negligible. It follows that the total

lattice sites of the hyperspace is GW , and the V -T surface can also be discretized into a

subset of lattice sites, whose size is proportional to G2. The following algorithm 1 solves P ,

with computational complexity being MWGW+2. While the size M of the library increases,

W should increase accordingly to capture spectral features of all materials.

In light of the exponential computational complexity of the above algorithm, we seek an

effective analytical theory for the detection probability. To that end, it’s helpful to point

out the following observation. Simplify the problem, by setting W = 2 and approximating

two material surfaces as parallel lines, as shown in Fig. S6c. Note that material surfaces are

only possible to be parallel when V and T are locked in a specific way. For simplicity, we

admit the V -T locking without solving its explicit form, and re-define T as the remaining
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Algorithm 1: Detection Probability Calculation Algorithm

Input: The target state Nν(mα, Tα, Vα), in the discretized hyperspace, and mean heat

signal Nν(m,T, V ) for all materials m in the library M, for all temperature T and

thermal lighting factor V .

1 Initialize probability vector, PM×1 = 0;

/* P(m) is the probability to predict the target as material m, m = 1, 2, · · · ,M. */

2 for ni(ν1) ∈ {n1(ν1), n2(ν1), · · · , nG(ν1)}

3 ...

4 for nj(νW ) ∈ {n1(νW ), n2(νW ), · · · , nG(νW )}

5 Calculate probability P(n) for the ground truth target state to produce the signal

point n = [ni(ν1), · · · , nj(νW )], according to Eq. (S16);

6 for m ∈ {1, 2, · · · ,M}

7 for b in lattice sites of the V -T plane of Nν(m,T, V )

8 Calculate probability Ps(m,b) for possible target state b to produce signal

n according to Eq. (S16);

9 end

10 end

11 Find material of the maximum probability: m = arg maxm{maxb(Ps)};

12 P(m) = P(m) + P(n);

13 end

14 end

Output: Probability vector P, with detection probability P = P(mα).

dimension of a material line. Worth noting is that, even the scenario is oversimplified, it

provides insight of the detection probability and leads to analytical expression that effectively

captures asymptotic behaviour of P . Connect points of the same T on both material lines,

and define g-axis along that, from the target material (red line, g = 0) to the counterfactual

material (blue line, g = 1). Again, we assume that g-T is a flat space, for simplicity, and that

the distribution function of signal (red shaded spot) remains the same for different target

states near the ground truth state. In fact, g is a continuous measure of distance between

two materials. Now geometry laws assert that the equiprobable hypersurface (black dashed
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line) overlaps with the g = 1/2 line, no matter what the orientation of g-axis is.

Theorem 1. For a recorded spectrum n = [n1, n2], where n1 ≡ n(ν1), n2 ≡ n(ν2), n1 ∼

N (N1, σ
2
1), and n2 ∼ N (N2, σ

2
2), when there exists a linear coordinate transform,n1

n2

 =

A1 B1

A2 B2

g
T

+

C1

C2

 , (S19)

where T represents the material line, g is the material mixture fraction, and material lines

are parallel, the detection probability P is exactly given by

P = Pr(g < 1/2) =

∫ 1/2

−∞
N (g; 0, σ2

CRB) dg, (S20)

as illustrated in Fig. S6d, where σ2
CRB is the Cramér-Rao bound of E(g), and E(g) is the

expectation value of g.

Proof. Denote tensor Λ the linear transformation matrix,

Λµ
α =

A1 B1

A2 B2

 . (S21)

The associated metric tensor of the g-T space is ηαβ = δµνΛ
µ
αΛν

β, where δµν is the Kronecker

delta tensor, as the metric tensor for the n-hyperspace. Since material lines are parallel and

signal distribution is invariant, the equiprobable hypersurface coincides with the g = 1/2

line, and hence the detection probability is given by

P =

∫ 1/2

−∞

∫ ∞
−∞

√
det(η) · 1

2πσ1σ2

· exp

{
−1

2

[
(
n1 −N1

σ1

)2 + (
n2 −N2

σ2

)2

]}
dTdg. (S22)

Substituting n with the transform expressions and integrating over T , we have

P =

∫ 1/2

−∞

1√
2π

det(Λ)√
(B1σ2)2 + (B2σ1)2

· exp

{
−g

2

2

det(Λ)2

(B1σ2)2 + (B2σ1)2

}
dg. (S23)

On the other hand, the mean spectrum [N1, N2] is also related by the coordinate transform

to the expectation values of g and T , which are denoted as Θ = {θ1, θ2} ≡ {E(g), E(T )}.

The Fisher information matrix (FIM) for the unknown parameter set Θ reads,

Jij = 〈∂ilogP(n) · ∂jlogP(n)〉 =
2∑

µ=1

∂iNµ∂jNµ

σ2
µ

, (S24)
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where P(n) = N (n1, N1, σ
2
1) × N (n2, N2, σ

2
2), i, j ∈ Θ, and average 〈·〉 is taken over the

whole n-hyperspace. The Cramér-Rao bound for an unknown parameter i puts a lower

bound to the variance of its unbiased estimator î,

Var(̂i) ≥ CRB(i) ≡
[

1

J

]
ii

. (S25)

Explicitly, we have

CRB[E(g)] =
(B1σ2)2 + (B2σ1)2

det(Λ)2
. (S26)

Substituting Eq. (S26) into Eq. (S23) proves Eq. (S20).

It is straightforward to derive the FIM with the full expression of heat signal probability

in Eq. (S16),

Jij = 〈∂ilogP(n) · ∂jlogP(n)〉 =
W∑
q=1

∂iNq∂jNq

Nq + σ2
. (S27)

Here, the FIM depends on specific hyper-spectral/multi-spectral (HS/MS) components like

gratings/filters used to obtain the spectral resolution. In order to get an upper bound of

FIM that is independent of specific optical components, we note

∂iNq∂jNq

Nq + σ2
=

(
∑

ν ∂iNqν)(
∑

ν ∂jNqν)∑
ν(Nqν + σ2

ν)

≤
∑
ν

∂iNqν∂jNqν

Nqν + σ2
ν

≤
∑
ν

∂iNν∂jNν

Nν + σ2
ν

≤ N

1 + γ

∑
ν

∂ipν∂jpν
pν

.

(S28)

The first equality is to use Nq =
∑

ν Nqν and to expand σ2 =
∑

ν σ
2
ν . The expansion of σ2

is arbitrary and will be determined below. The inequality in the second line can be proved

mathematically (not shown) but has an intuitive interpretation — the Fisher information

with spectral resolution is not lower than the Fisher information without spectral resolution.

In the third line, Nν is Nqν with perfect optical transmittance and zero back reflection from

the sensor. In the last line, we have used the total number of photons, N =
∑

ν Nν =
∑

ν aλν ,

in the heat spectrum incident into HADAR, and we have used pν ≡ Nν/N to denote the

spectral probability distribution of one incident photon. The expansion of σ2 in the first line

is σ2
ν = σ2pν , and we have used γ = σ2/N . Combining the above two equations, we will meet
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a double summation
∑

q,ν . With grating-type spectroscopy, this double summation is the

summation over the full heat spectrum, while with filter-type spectroscopy, the summation

over q is repeating the measurement W times. With either kind of HS/MS components, this

double summation is equivalent to the summation over the full heat spectrum and the full

measurement time. Consequently, the fundamental FIM that is determined by the input

photons and irrelevant to optical components can be rewritten as

Jij =
N

1 + γ
J0
ij =

N

1 + γ

∑
ν

∂ipν∂jpν
pν

. (S29)

In deriving Eq. (S29), we have followed the rigorous model of heat signal. However, since

Eq. (S29) has been optimized over imaging systems, it has a simpler interpretation. While

N is the total input photons and 1 + γ is the degradation by realistic detector noise, J0
ij

is the single-photon FIM that can be directly written down with the spectral probability

distribution. For ideal PNRDs, γ = 0 and Eq. (S29) gives the shot-noise limit. In deriving

Eq. (S29), we have also used an approximation in Eq. (S13) that λqν � 1. When this

approximation doesn’t hold, the variance of photon number for thermal sources of negative

binomial distribution equals Nqν(1+λqν) instead of Nqν . The extra factor of 1+λqν accounts

for photon bunching, when more than one photon hit HADAR simultaneously and cannot

be resolved. This photon bunching effect has been ignored in considering the shot-noise

limit.

Materials in a standard library are categorical parameters. Theorem 1 introduces the

material mixture fraction g, which is a continuous measure of the distance (g ∈ R) between

two materials representing a ‘virtual shift’ of the target material from the ground truth

eν(mα) [i.e., g = 0] to the counterfactual eν(m) [i.e., g = 1]. Theorem 1 suggests that dis-

tinguishing two materials is equivalent to estimating the continuous fraction g of a mixture

of those two materials and then discretizing g. Therefore, we immediately have an effective

theory in algorithm 2 for fundamental limit on HADAR material estimation, where gener-

ally W > 2 and material surfaces are not parallel. However, we emphasize that Eq. (S30)

is not a signal mixture, as g axis is the equal-T contour. In principle, a mixture of signal

would involve objects with different temperatures. Axes g and T are not necessary to be

orthogonal. By computing FIM, one is quantifying sensitivities of the spectral distribution,

in n-hyperspace, with respect to variations of unknown parameters. Put another way, FIM

gives correlations of directional derivatives of the information carried by heat signal, with
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Algorithm 2: Fundamental Limit on HADAR Material Estimation (M = 2)

Input: The material library M = {eν(m)|m = 1, 2, · · · ,M}, the target state {mα, Tα, Vα},

and the detection system configuration.

1 Initialize the probability vector, PM×1 = 0;

/* P(m) is the probability to predict the target as material m, m = 1, 2, · · · ,M. */

2 Set m = 1 or 2, but m 6= mα;

3 Replace the emissivity in Eq. (S18) with

eαν = [1− g] · eν(mα) + g · eν(m); (S30)

4 Calculate λν according to Eq. (S7) and obtain pν = λν/
∑

ν λν ;

5 Calculate the single-photon Fisher information matrix, J0
ij , for the unknown parameter set

Θ = {g, Tα, Vα} according to Eq. (S29);

6 Calculate the single-photon Cramér-Rao bound in material estimation, σ0 =
√

[1/J0]gg;

7 Calculate the semantic distance between materials, d0 ≡ 1/2σ0, and obtain the statistical

(Mahalanobis) distance d =
√
N/(1 + γ)d0 ;

/* Semantic distance d0 is an intrinsic metric to quantify material difference,

irrelevant to photon number nor detector noise. */

8 Calculate the detection probability P , according to Eq. (S20) which further simplifies to

P =
1

1 + ε
, (S31)

where ε = (1− erf(d/
√

2))/(1 + erf(d/
√

2));

9 Update probability vector P, P(mα) = P , P(m) = ε/(1 + ε);

10 Calculate the Shannon information about the target material, I = log2(P )− log2(1/2),

which is the maximum amount of information that can be retrieved by HADAR;

Output: Shannon information I, semantic distance d0, statistical distance d, and

probability vector P with detection probability P = P(mα).

respect to parameters to be estimated. Off-diagonal terms of the FIM describe the coupling

between different parameters, indicating how changing of parameter j would affect the di-

rectional derivative of the information with respect to parameter i. As shown in Fig. S6b,

at T = T0 where the material library is represented by red and blue dots, the derivative of
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probability distribution (or information carried by heat signal) with respect to g is large.

This means HADAR is sensitive to material change. At T = T1 > T0 where red and blue

dots move closer to the intersection point or even coincide with each other, the derivative

of probability distribution with respect to g is vanishing, which means HADAR becomes

insensitive to material change. The matrix inversion in computing the Cramér-Rao bound

takes the coupling into account and leads to an effective sensitivity. The statistical distance

effectively describes the distinguishability of the target state (red dot) with counterfactual

states (blue curve), while the semantic distance distills the distinguishability to a metric

that is intrinsic to material difference. The above theory rigorously describes the following

intuitive picture. Since temperature T and thermal lighting factor V are both unknown,

HADAR has to estimate multiple parameters {mTV } simultaneously from heat signal S to

identify the material. The material difference at the given target state (red dot) is no longer

characterized by the Euclidean distance between the red dot and the blue dot (with the same

V and T as the red dot). Instead, it is characterized by the shortest ‘distance’ of the red dot

to the blue curve, where the shortest distance is exactly captured by the multi-parameter

statistical (Mahalanobis) distance. We emphasize that high-dimensional integral for the

detection probability in algorithm 1 now reduces to a one-dimensional integral, as shown in

Fig. S6d. In extreme scenes where Vα = 0 and two materials are orthogonal [eν(1) ·eν(2) ≡ 0

for all ν], it can be shown that d0 →∞, and hence one incident photon suffices to identify

the target (P → 1) through measuring the frequency. In the opposite limit where thermal

lighting factor Vα = 1 and Tα = T0, one can show semantic distance d0 → 0, and hence

it is impossible to identify the target (P → 1/2) no matter how many photons we have.

We call the latter situation an equilibrium singularity. In this case, any target would form

a cavity and be in thermal equilibrium with the environment, with photon number of the

radiation field given by Boltzmann’s distribution. It consistently leads to the blackbody

radiation spectrum Sαν ≡ Bν(Tα) as given in Eq. (S18), and hides every material feature

of the target. One typical example of the equilibrium singularity is the standard cavity-

based blackbody source commercially available. As long as the cavity is enclosed (with a

tiny hole, Vα ≈ 1, Tα = T0), the output spectrum is a blackbody spectrum whatever the

material is used inside the cavity. Another phenomenon of the equilibrium singularity can

be commonly seen in a closed office room (Vα = 1, Tα ≈ T0). Thermal imaging of walls,

desks and chairs inside the office (observed, not shown) would appear uniform of no texture
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FIG. S7. Shot noise limit of HADAR identifiability for 3 spectral bands, corresponding to the scene

of Fig. 3a in the main text. Normalized photon number is Nd2
0. γ0 = γ1N = 6.85e4 is used here for

better visual clarity. Red curve: theoretical shot-noise limit. Red circles: machine learning with

Monte Carlo simulations for the shot-noise limit. Cyan solid curve: mixed noise. Cyan circles:

machine learning with Monte Carlo simulations for the mixed noise. Cyan dashed: Flicker noise.

Cyan dash-dotted: Johnson-Nyquist noise. This figure shows perfect agreement between Monte

Carlo simulations and theoretical predictions, as compared with Fig. 3b in the main text.

even they are made of very different materials. The objects are indeed emitting different

amounts of thermal radiation. However, the scattered signal from the environment which

is in thermal equilibrium with the object completely balances these differences. Numeric

experiments of Monte Carlo simulation and machine learning classification further verifies

our proposed algorithm 2, as shown in Fig. S7.

Remark 1. Before HADAR detection, we’ve assumed that each material in the library is

equiprobable to appear in the scene, and hence the initial information about material con-

tained in the scene is −log2(1/2) = 1 bit. Even though different materials may have different

volume occupation in the n-hyperspace, enclosed by the equiprobable hypersurface and axes,

the assumption would still hold since materials have different populations in the physical

scene and the scene is dynamic. Spatial and temporal averaging would render the over-
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all probability to be approximately equal. The asymmetric n-hyperspace volume occupation

actually implies the biased estimator is unbalanced. In real applications, boundary effects

(existence of axes) usually can be ignored and volume occupation would be effectively equal.

After all, one can easily generalize the theory to material library with different appearing

probability.

B. Material estimation — multi-material library

To identify an object α in a multi-material library M = {eν(m)|m = 1, 2, · · · ,M} with

M > 2, the detection probability P has the following asymptotic behaviors,

• if for m ∈ {1, 2, · · · ,M} and m 6= mα, there are M̄ materials satisfying d(m,mα)� 1,

M̄ < M , then, P → 1/(M̄ + 1);

• if, ∀m ∈ {1, 2, · · · ,M} and m 6= mα, d(m,mα)� 1, then, P → 1.

In generalizing algorithm 2, we define material pairs {m,mα} for all m 6= mα. For each mate-

rial pair, we follow algorithm 2 to compute the semantic distance d0(m,mα) = 1/2σ0(m,mα)

and the statistical distance d(m,mα) =
√
N/(1 + γ)d0(m,mα). We generalize the prediction

probability vector as

P(m) =
ε(m,mα)∑
m′ ε(m′,mα)

, (S32)

ε(m,mα) ≡ 1− erf[d(m,mα)/
√

2]

1 + erf[d(m,mα)/
√

2]
,

where summation is taken over m′ = 1, 2, · · · ,M . When m = mα, d(m,mα) = 0 and

ε(m,mα) = 1. One can readily verify that the detection probability, P = P(mα) as given

in Eq. (S32), meets all asymptotic behaviours listed above and recovers the detection prob-

ability in algorithm 2 when M = 2. The Shannon information about the target material

is given by log2(P ) − log2(1/M). Prediction probability distribution might be useful in

understanding machine-learning-based multi-material classification, but it is less important

when considering whether a particular material mα in the library is identifiable or not. The

key figure of merit for this is the minimum semantic distance. The underlying physics is

that, whether one material can be identified or not depends on its most similar material

in the library, not others. Therefore, we define HADAR identifiability of the target mate-

rial mα as I ≡ log2(Pmin) − log2(1/2), where the minimum detection probability Pmin is
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given by Eq. (S31) for the material pair that has the minimum semantic distance. When

M = 2, HADAR identifiability reduces to the Shannon information of the target material.

The overall HADAR material estimation theory is summarized in algorithm 3. Monte Carlo

simulations to demonstrate material identification in the multi-material library is given in

Extended Data Fig. 6. The minimum semantic and/or statistical distance of each material

in the library will decrease when new materials are introduced into the library. Distinct

materials are less affected, while similar materials are more affected. Semantic and statisti-

cal distance will increase with better spectral resolution (more spectral bands). The above

analysis implies the following scaling laws. For fixed spectral resolution, the more materials

in a library, the more difficult it is to distinguish each of them. For a fixed number of

materials in the library, higher the spectral resolution, the easier it is to distinguish each of

them. And to distinguish more materials in a library, better spectral resolution and better

sensors are required.

C. Depth estimation

This subsection is denoted to addressing the question of how many photons are needed

to reach a desired ranging accuracy. Unlike active ranging where the absolute phase or

time-of-flight of signal is used and even one photon suffices to estimate distance, passive

ranging suffers from the loss of absolute phase in imaging. Photon position in the image

plane records the spatial phase gradient instead, and corresponding multi-photon windows

Ω with the same photon distribution in different imaging systems are needed to statistically

retrieve at least two gradients to reconstruct the phase and recover targets’ position. In this

paper, ranging is based on monocular/binocular stereo vision, as shown in Fig. S8. But we

stress again that HADAR is not limited to monocular/binocular stereo vision. In binocular

stereo vision, a point source target at position (x, y, z) is imaged with left and right focal-

plane cameras. Two cameras are on the x axis, with position being (−b/2, 0, 0) for the

left and (b/2, 0, 0) for the right. The target falls at (xL, yL) and (xR, yR) on two cameras,

respectively. Here, subscripts indicate cameras’ local coordinate systems whose origins are

at the center of the cameras. Within ray optics, we can write down the geometric relations

for two yellow-shaded similar triangles, and solve out the position of the target with image
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Algorithm 3: Fundamental Limit on HADAR Material Estimation (M ≥ 2)

Input: The material library M = {eν(m)|m = 1, 2, · · · ,M}, the target state {mα, Tα, Vα},

and the detection system configuration.

1 Initialize the probability vector, PM×1 = 0;

/* P(m) is the probability to predict the target as material m, m = 1, 2, · · · ,M. */

2 for m ∈ {1, 2, · · · ,M} but m 6= mα

3 Repeat steps 3 ∼ 7 in algorithm 2 for material pair (m,mα). Obtain semantic distance

d0(m,mα) ≡ 1/2σ0 and statistical distance d(m,mα) =
√
N/(1 + γ)d0(m,mα);

4 end

5 Search the minimum semantic distance among all {m,mα} pairs,

dmin
0 = min

m
{d0(m,mα)}, (S33)

and get the corresponding minimum statistical distance dmin ;

6 Calculate prediction probabilities,

P(m) =
ε(m,mα)∑
m′ ε(m′,mα)

, ∀m ∈ {1, 2, · · · ,M} (S34)

ε(m,mα) ≡ 1− erf[d(m,mα)/
√

2]

1 + erf[d(m,mα)/
√

2]
,

where summation is taken over m′ = 1, 2, · · · ,M ;

7 Calculate the minimum detection probability Pmin with the minimum statistical distance

dmin substituted in Eq. (S31);

8 Calculate the HADAR identifiability of the target material, I = log2(Pmin)− log2(1/2),

which is between 0 ∼ 1;

/* The identifiable criterion is given by dmin ≥ 1, which gives I ≈ 0.75. */

Output: HADAR identifiability I, minimum semantic distance dmin
0 and minimum

statistical distance dmin, and prediction probability vector P.
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FIG. S8. Schematic of binocular stereo vision.
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, (S35)

where disparity d ≡ xR − xL. Therefore, the ranging error δz is given by the disparity error

δd through

δz =
z2

bf
δd. (S36)

When disparity error is fixed, e.g., δd = 1 pixel, Eq. (S36) gives the quadratic scaling law of

ranging error with respect to distance z. Note that in monocular stereo vision or multi-view

stereo vision, δz is also proportional to δd but with different coefficients. This subsection will

give the fundamental limit of the disparity error δd. For practical sources of the disparity

error, such as, image distortion, camera out of calibration, and pixel locking, we refer the

readers to Ref. [13]. To distinguish with practical disparity errors, here we call the physics

origins of disparity error as the photonic disparity error.

We start with a continuous image plane without pixelization. Disparity error for a given

target feature is from searching the areas (windows) on left and right image planes that

correspond to the given feature. Fig. S9a shows the schematic of the correspondence problem

commonly known in computer vision. The underlying scene S is general and could be any

signals, e.g., heat signal or optical signal. The models for imaging system and detector can

be found in Sec. SI, especially in Fig. S2. One extra mechanism we have considered here is
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Scene 𝑆(𝑥, 𝑦, 𝑧, 𝜈)
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For a given point in the left image, find the corresponding point in the right image

--- The correspondence problem
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a b

For a given point in the actual image,

find the corresponding point in the ideal 

image

FIG. S9. a. Schematic of the correspondence problem in computer vision. b. We re-interpret the

correspondence problem as a position estimation problem in estimation theory.

the diffraction. To focus on fundamental limits, we assume the binocular stereo systems are

well calibrated so that yL = yR and stereo matching is merely along the x axis on the image

plane. This is exactly to ignore the practical sources of disparity error. We note that locating

a window of the left image in the right image plane can be mapped to locating the window

of few observed photons in its ideal image, as shown in Fig. S9b. This is to re-interpret

the correspondence problem as a window-position estimation problem in estimation theory.

Here, the ideal images are assumed to be noiseless without diffraction and free of occlusion,

where exact solution to the correspondence problem exists. For the q-th filter or band, the

Fisher information about the x-axis position of a window is given by

Jx = 〈∂xlogP̄(n) · ∂xlogP̄(n)〉 =
(∂xNiq)

2

Niq + σ2
. (S37)
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Here, P̄(n) is given in Fig. S9a, and we have used the same notation as previous subsections

except that now the unknown parameter is x and the scene S depending on T, e and X is

the given ground truth in the estimation theory. The above Fisher information captures

the textures in realistic images that is useful for stereo matching. When photon flux is

expressed in image intensity in realistic images (large-N limit), the above denominator is

the total variance of noise, and the above Fisher information is consistent with the classical

Cramér-Rao bound in [14] which is the inverse of the Fisher information. We emphasize that

the classical Cramér-Rao bound in [14] is based on a deterministic signal model. However,

imaging with few photons, in principle, is a probabilistic problem that cannot be described

by a deterministic model. Therefore, the re-interpretation in Fig. S9 is crucial to derive the

shot-noise limit.

In order to get the fundamental limit of ranging error that is independent of optical

components, we optimize the Fisher information over optical components to be

Jx =
1

1 + γ

∑
ν

(∂xNxν)
2

Nxν

, (S38)

following the same procedures as Eq. (S29). Here, Nxν = aAxνAp, andAxν is the convolution

of the point-spread function (PSF) with λi instead of λiq as shown in Fig. S9a,

Axν ≡ Ai(xi, yi, ν) =

∫
λi(xi − ξ, yi − ζ, ν)/Ap · PSF(ξ, ζ, ν) dξdζ. (S39)

The above Fisher information is defined on a window area Ap, within measurement time t,

and for a given filter or spectral band. It follows that we can retrieve the spectral Fisher

information flux jxν as the Fisher information per unit wave number, per area on the image

plane, and per coherence time. It is obtained by taking such limits of Eq. (S38), and is given

by

jxν =
1

1 + γ

(∂xAxν)2

Axν
. (S40)

The above spectral Fisher information flux describes the (spectral, spatial, and temporal)

density of incoming information collected by the sensor that is useful for window-position

estimation and stereo matching. The maximum Fisher information over a feature/block

window, with or without spectral and spatial resolution, can be obtained by taking corre-

sponding limits of Eq. (S38), and are summarized in Tab. S4. Now, the window-position

estimation error for either the left or the right view is lower bounded by δxL/R ≥
√

1/Jx,
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Fisher information Without spatial resolution in

the window

With spatial resolution in the

window

Without spectral resolution Jx = a
1+γ

(
∫∫

Ω ∂xAxν dsdν)2∫∫
ΩAxν dsdν

Jx = a
1+γ

∫
Ω

(
∫
∂xAxν dν)2∫
Axν dν

ds

With spectral resolution Jx = a
1+γ

∫ (
∫
Ω ∂xAxν ds)2∫

ΩAxν ds
dν Jx = a

1+γ

∫∫
Ω

(∂xAxν)2

Axν dsdν

TABLE S4. Fisher information about the window position in stereo matching.

with Jx given in Tab. S4. It follows that the fundamental limit of the photonic disparity

error is

δd =
√
δx2

L + δx2
R ≥

√
2/Jx. (S41)

We can further simplify the expression for the above Cramér-Rao bound by decomposing

the diffraction convolution in Eq. (S39). For convenience, we take the case with both spatial

and spectral resolution (third row, third column in Tab. S4) as an example. The derivations

apply to all other cases. Since N = a
∫∫

Ω
Axν dsdν is the total input photon number to the

selected window within the heat spectrum, we define pA(x, ν) ≡ Axν/
∫∫

Ω
Axν dsdν as the

spectral and spatial probability distribution of one photon. Now, the Fisher information

can be rewritten as Jx = N
1+γ

J̄0
x = N

1+γ

∫∫
Ω

(∂xpA(x,ν))2

pA(x,ν)
dsdν, where J̄0

x is the single-photon

Fisher information about window position. Moreover, it is fair to approximate that the

diffraction only affects the spatial distribution of photons but doesn’t change the photon

number. This is to assume that the diffraction pattern of the whole scene of interest is

completely inside the sensor area. Consequently, we also haveN = a
∫∫

Ω
λ(xi, yi, ν)/Ap dsdν.

Denoting λxν ≡ λi(xi, yi, ν)/Ap and pλ(x, ν) ≡ λxν/
∫∫

Ω
λxν dsdν, we can interpret Eq. (S39)

as the probability convolution. This reveals that the random position of an observed photon

on the image plane (say the left image, x̄L) is a superposition of two independent and

random variables, x̄L = x + ξ. The first variable is the corresponding point source in the

extended scene which shall generate an ideal image point at x, and the second variable ξ

is the displacement of the photon position with respect to the ideal image point caused by

diffraction. Now, we have

δx̄2
L = δx2 + σ2

d. (S42)

The photon-position uncertainty consists of photonic diffraction uncertainty (σ2
d given by the

width of the PSF; caused by the finite aperture) and photonic correspondence uncertainty

(δx2; without diffraction; caused by the indistinguishability of the photon from different
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Fisher information Without spatial resolution in

the window

With spatial resolution in the

window

Without spectral resolution J0
x =

(
∫∫

Ω ∂xpxν dsdν)2∫∫
Ω pxν dsdν

J0
x =

∫
Ω

(
∫
∂xpxν dν)2∫
pxν dν

ds

With spectral resolution J0
x =

∫ (
∫
Ω ∂xpxν ds)2∫

Ω pxν ds
dν J0

x =
∫∫

Ω
(∂xpxν)2

pxν
dsdν

TABLE S5. Single-photon Fisher information about the point-source location in stereo matching.

objects). The single-photon Cramér-Rao bound denotes the lower bound of the single-

photon position uncertainty, 1/J̄0
x = min(δx̄2

L). With the diffraction effect separated out, we

can replace pA(x, ν) with pxν ≡ pλ(x, ν) in J̄0
x to get the lower bound of δx2, σ2

c = min(δx2).

Eventually, the fundamental limit of ranging error is

√
Nδz ≥ z2

bf

√
2(1 + γ)(σ2

c + σ2
d), (S43)

where σ2
c = 1/J0

x , with the single-photon Fisher information about point-source location, J0
x ,

summarized in Tab. S5. The above fundamental limit of ranging accuracy has been verified

by Monte Carlo experiments with sub-pixel block matching in Fig. 4 of the main text.

Ranging results based on machine learning shown in Fig. S10 also confirms that HADAR

ranging is better than thermal ranging. We can further ignore the dispersion effect and

assume identical diffraction for thermal radiation at different wave numbers. This is justified

in practical stereo-vision applications where ranging error is mainly caused by photonic

correspondence error. In the point-source limit, it can be shown that pxν → δ(x), σc → 0,

and Eq. (S43) recovers Rayleigh’s limit. We now briefly prove that the Fisher information for

HADAR ranging with spectral resolution is more than Fisher information for panchromatic

thermal imaging. In the mathematical expression of the Fisher information for HADAR in

Tab. S5, the spectral information is squared before integral, which prevents destruction of

the spectrally resolved Fisher information from contributions of opposite signs. This leads

to a larger Fisher information J0
x and a smaller photonic correspondence uncertainty σc.

Mathematically,
∫ (∂xpxν)2

pxν
dν − (

∫
∂xpxν dν)2∫
pxν dν

can be manipulated into a square form, (∗)2 ≥ 0,

∗ being a certain expression, and hence it proves that the Fisher information is larger

with spectral resolution. More importantly, by breaking the TeX degeneracy, HADAR

can support sophisticated priors like sparsity or smoothness to further remove unknowns

in the parameter set {mα, Tα, Vα}, suppressing ranging error toward a lower bound, J0
x ≤∫∫

Ω
(∂xbxν)2

bxν
+ (∂xkxν)2

kxν
dsdν, with bxν ≡ S̃0

xν/
∫∫

Ω
Sxνdsdν and kxν = pxν − bxν . Here, S̃0

xν is
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f Ground truth depth (m)d DeepPruner + HADARb DeepPruner + thermal imaging

c HADAR e Optical imaginga Thermal imaging

FIG. S10. HADAR ranging beats state-of-the-art thermal ranging. a, Thermal imaging with the

ghosting effect. b, Thermal ranging with DeepPruner (pre-trained on the KITTI dataset) [15].

c, HADAR scattered signal with thermal textures. d, HADAR ranging based on DeepPruner. e,

Optical imaging. f, Ground truth depth. DeepPruner gives improved performance for HADAR

perception as compared to traditional thermal vision. The fundamental reason for this improved

performance in HADAR is due to breaking of TeX degeneracy and overcoming the ghosting effect.

In contrast, no texture information is collected in traditional thermal sensing, and hence post

processing of AI algorithms cannot get accurate depth. HADAR works at the hardware level and

enables the AI to provide accurate ranging comparable with the ground truth depth.

the direct emission.

The similar roles of photonic diffraction uncertainty and photonic correspondence uncer-

tainty in Eq. (S43) can be further illustrated in Fig. S11. A point source with diffraction

characterized by the point-spread function will generate the same mean image as an extended

scene characterized by the point-spread function without diffraction. Therefore, they suffer

from equal photonic disparity error, for given photon number and detector.

D. Texture quantification

The single-photon Fisher information about point-source location in last subsection, J0
x ,

provides a metric to quantify the textures of the input light field. The numerator in J0
x is

proportional to δS2 mentioned in Sec. SID. The presence of its denominator is a consequence

of inevitable photon shot noise. Particularly, when electronic noise and diffraction are taken
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FIG. S11. Comparison of the photonic diffraction uncertainty and the photonic correspondence

uncertainty. With one observed photon on the image plane whose position probability distribution

is given by the mean image, if we want to infer the position of its emitting point source in the ideal

image, error could arise either due to diffraction (photonic diffraction uncertainty) or because we

don’t know which point source in the extended object is actually emitting that photon (photonic

correspondence uncertainty).

into account, Fisher information about window position in Eq. (S37) is the metric to quantify

the local textures in realistic images that are useful for stereo matching. Such a Fisher

information metric directly connects to the Cramér-Rao bound of ranging errors and has

physical significance. Evaluation of the Fisher information metric Jx requires the ground

truth Niq ∼ Axν ∼ Sαν as well as the characterization of the detector. The requirement

of ground truth in evaluating the Fisher information is common in estimation theory. In

the literature, there are many other metrics to quantify textures, for example, the standard

deviation (stdfilt, available in Matlab) and the local entropy (entropyfilt, available in Matlab)

for local textures, or the global entropy for the entire image. These metrics are easy to

compute and do not require the ground truth, but they cannot connect to the ranging

accuracy. We point out that the finite-difference version of the numerator of Jx on a pixel

array,
∑

s∈Ω[Niq(s, yi)−Niq(xi, yi)]
2, relates to the variance of the image and hence relates to

the standard deviation metric. Important differences between the Fisher information metric

and the standard deviation metric are two folds. Firstly, the Fisher information is computed
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along the desired x axis, while the standard deviation is computed in square blocks (both x

and y directions). The directional variation is crucial to capture the texture that is useful

for stereo matching, since the variation along y direction cannot help stereo matching in the

x direction. Secondly, the Fisher information removes the effect of noise from texture, while

the standard deviation metric treats noise as texture too. All the above three metrics are

illustrated in Fig. S12. The images are synthesized so that the ground truth is known for

computing the Fisher information metric. In this paper, we will use the Fisher information

metric to quantify textures whenever it is possible. When only the actual image is provided,

we use the standard deviation in a window to define the local texture density.

Fisher information Standard deviation EntropyImage

0 1 2 3 40 25 50 75 100

FIG. S12. Comparison of different metrics to quantify textures. The Fisher information metric

connects to the Cramér-Rao bound of ranging errors and has physical significance. It captures

the x-direction features and ignores the variation caused by noise. The standard deviation metric

captures both x- and y-direction variations including noise. Particularly, it cannot connect to

ranging errors. The entropy metric captures the local Shannon information but cannot capture

the useful information specific to the estimation problem.

Now we use the metric of texture to quantitatively compare our TeX vision with state-

of-the-art thermal imaging. Fig. S13 and Fig. S14 show the texture quantifications and the

advantage of TeX vision in texture recovery, in winter and summer, respectively. Note that

low resolution of textures is caused by low spatial resolution of the FLIR A325sc thermal

camera (320 × 240). With higher spatial resolution, more details of the texture can be

recovered, see Extended Data Figs. 2-5. For panchromatic thermal imaging without spec-
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a Raw thermal vision (ghosting) d T-map
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FIG. S13. Experimental HADAR TeX vision at a winter night (Dec. 2020, Indiana, USA) beats

conventional thermal vision in textures. a, Raw thermal vision of a winter night scene taken

by FLIR camera A325sc. b, Rescaled thermal image to improve the visual contrast. c, Empirical

pseudo coloring (HSV, Matlab) adopted by modern thermal cameras to improve the visual contrast.

d-f, HADAR T-map, X-map, and TeX vision taken by our HADAR prototype-1. The texture

density value at each pixel is the standard deviation of the corresponding 3× 3 neighboring pixel

array. Our TeX vision gives a texture density of 0.077 on average over the whole image, better than

the state-of-the-art pseudo coloring approach which has a texture density of 0.027 on average. Note

that more textures means more details in images but means higher values in texture density, so the

brighter the texture density figure, the better. Errors remaining in texture (e) are due to mismatch

of the emissivity profiles in the real scene with the material library, as well as multi-object scattering

contributions, and consequently they are obvious around boundaries. This can be overcome in the

future by on-site calibrations of the material library and more advanced decomposition algorithms.

tral resolution, thermal vision becomes low contrast and textureless as shown in Fig. S13a,

due to the texture-loss mechanisms explained in Sec. SID. State-of-the-art thermal sens-

ing requiring better contrast uses AGC (automatic gain control) and empirically maps the

41



a Raw thermal vision

d HADAR texture X

b Thermal vision in pseudo color (state-of-the-art)

e HADAR TeX vision
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FIG. S14. Experimental HADAR TeX vision in summer daylight (Sep. 2021, Indiana, USA), in

comparison with Fig. S13, showing the robustness of HADAR on different environment conditions.

a, Raw thermal vision. b, State-of-the-art enhanced thermal vision in pseudo color. c, Texture

density (in standard deviation metric) in enhanced thermal vision. d, HADAR texture X. e, TeX

vision obtained by our prototype HADAR. f, Texture density in TeX vision. HADAR TeX vision

is about 4.6 folds better in texture density than state-of-the-art thermal vision.
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intensity with a nonlinear function into either the full grayscale range (b) or pseudo-colors

(c). This empirical post-processing cannot block the 4 texture-loss channels in Sec. SID, and

only visually and partially improves the contrast. Furthermore, AGC loses all quantitative

information of thermal images that is useful for temperature estimation. We emphasize

that post-processing can never add new information to the data. To be more rigorous, this

empirical post-processing doesn’t increase the Fisher information Jx in Eq. (S37). What the

post-processing does is to present the data in a more suitable way, according to the visual

response and acuity of human eyes to different colors and intensities. This leads to the fact

that the pseudo coloring approach needs to be tuned per scene to give the optimal texture

visualization. In practice, modern thermal cameras use multiple pre-designed color maps

for experimentalists to choose during experiments. With the same FLIR camera, HADAR

resolves TeX degeneracy, blocks texture-loss channels (1) and (2) in Sec. SID, and collects

more information on the hardware level, which is particularly obvious in the human-robot

identification and camouflage problems in Extended Data Figs. 7 and 9. On the visual level,

HADAR temperature (d) is similar to the rescaled thermal image (b), but we remind that

in (d) subtle geometrical X-type textures have been decoupled. The key to improving visual

contrast is to subtract the strong signal floor and keep weak variations. FLIR AGC and

pseudo-coloring are empirical approaches to subtract the signal floor. In contrast, HADAR

measures temperature and emissivity to estimate the direct emission which is exactly the

strong signal floor. Now, the resulting HADAR X-map (e) is mainly the scattered part of

heat signal in Eq. (S2). We remind again that the scattered signal is indeed the carrier of

rich textures in grayscale optical imaging in daylight, as explained in Sec. SID.

For hyperspectral thermal sensing, in order to visualize the hyperspectral data cube

in RGB channels, researchers have been trying to pick out three most significant spectral

bands or principal components to maximize textures. To do so for W spectral bands, the

W × W mutual information (or covariance) matrix can be derived and the three bands

with least mutual information (most independent) can be chosen to visualize the scene. Or

alternatively, principal component analysis can be done to extract the first 3 components.

In terms of the Fisher information metric of texture, as shown in the last row of Tab. S4,

choosing 3 bands (components) and abandoning the rest is to restrict the spectral integral

into 3 narrow bands (components). This decreases the Fisher information and degrades the

ranging accuracy. In contrast, HADAR distills all physical information in the heat cube
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into TeX parameters, according to the heat signal model. The natural TeX vision can be

visualized in RGB (HSV) color space, without loss of information.

E. Bounds in the presence of scene flow

In most real-world applications, either the target or the intelligent agent equipped with

HADAR will be moving. The relative motion of the scene with respect to the sensor is

described by scene flow in the literature. Projected onto the image plane, scene flow is

manifested as the motion blur in each individual image (heat cube in our case) and optical

flow in sequential image frames (heat cubes).

The bounds of HADAR identifiability and ranging accuracy given in previous sub-sections

are derived for stationary objects and they apply to non-stationary objects with negligible

motion blur. Motion blur is usually negligible when the apparent motion ∆ of a point

source on the image plane is within one pixel, ∆ < 1. The apparent motion is given by

∆ = (v · t ·L)/(r · θ), where v is the relative transverse speed, t is the exposure time, L is the

number of pixels in the horizontal direction, r is the distance of the target, and θ is the field

of view. Motion blur is negligible when either the transverse speed is low or the exposure

time is short. For example, a target at 30 m away captured by FLIR A325sc (t < 12 ms,

L = 320, θ = 50 deg) on a car driving at 30 mph [v ≤ 30sin(θ/2) mph] will have ∆ . 0.8 and

hence the motion blur is negligible. To allow a higher travelling speed, the hyperspectral

data cube acquisition rate of the used camera must be high so that the exposure time is

sufficiently short to avoid motion blur, according to the criterion ∆ < 1. This criterion,

∆ < 1, constrains the applicability of our bounds. Within the criterion, TeX decomposition

can be performed for each individual heat cube to get the TeX vision, and detection and

ranging are based on TeX vision. Worth noting is that traditional optical flow, scene flow,

semantic segmentation, etc., can all be extensively explored based on TeX vision and depth,

presenting a new research frontier. For example, the RGB-d flow in Ref. [16] can be formally

transplanted on TeX vision and depth, to retrieve sequential information.

For stronger motion blur beyond the above criterion, if local motion field can be repre-

sented by linear convolutional kernels, there are multiple motion-blur removal algorithms

available to estimate the motion field [17–19] and get the clean signal without motion blur

out of the raw data. Consequently, TeX decomposition and TeX vision are applicable again
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after the pre-processing of motion-blur removal.

In the limit of extremely long exposure time, the motion blur kernel is a complicated

convolution depending on the velocity field of the scene flow. The algorithms to remove

motion blur in the presence of such motion blur are still open questions and deserve future

research.

However, in the presence of strong motion blur, the bound for ranging accuracy (Eq. (S43))

still holds, even though the photonic correspondence uncertainty now includes contributions

from motion blur in a complicated form. In this scenario, we can directly use Eq. (S37),

which is universal for all stereo images (including those with motion blur) and can be derived

for given image pairs themselves.
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SIII. HADAR ESTIMATION THEORY II: INVERSE MAPPING IN APPLICA-

TIONS

Recall that the heat signal leaving object α is Sαν = eανBν(Tα)+[1−eαν ]Xαν , with Xαν =∑
β 6=α VαβSβν . Starting with Tα, eαν , and Vαβ for all compact and finite objects, Monte Carlo

path tracing can solve Sαν asymptotically with the l-th order scattering-cutoff solution S̃lαν .

The residual error δαl ≡ |S̃lαν−Sαν | → 0 when l increases. Let k denote the maximum number

of significant environmental objects considered in the scene, whose spectral emissivity must

be one out of M curves in the material library M = {eν(m)|m = 1, 2, · · · ,M}. The

parameter set {klM} determines the complexity of the inverse problem and also controls

the accuracy of the solution of Tα, eν(mα) and Xαν for given observed Sαν . Note that Sβν in

texture Xαν =
∑

β 6=α VαβSβν is partially observed as Sαν . We down sample Sαν into k spectra

to approximately describe k most significant environmental objects. For example, each heat

cube in the HADAR-Street dataset has dimension of H×W × C = 1080× 1920× 54, H

being height, W being width, and C being channel (number of wavenumbers). In our

demonstration, we considered k = 2 environmental objects. To do so, we spatially split

images H×W into 2 × 1 quadrants, each quadrant having dimension of 540 × 1920 × 54.

Then we spatially average each quadrant into a spectrum of length 54, i.e., for each of 54

channels, we average the 540 × 1920 sub-image and get its mean value. These 2 spectra,

denoted as S1ν and S2ν , are equivalent objects of the environment, and now the texture is

given by

Xαν = Vα1S1ν + Vα2S2ν + δαν,2, (S44)

where the residue δαν,k is the summation of all sub-leading contributions,

δαν,k ≡
∑

β 6=1,2,··· ,k

VαβSβν , (S45)

and we have δαν,k → 0 as k increases. Spectral radiance of external objects beyond the view

can also be provided in addition to the down-sampled spectra in Eq. (S44). For example,

sky is usually a significant environmental object in open areas but may not be captured in

the image.

As explained in Sec. SID, the part of scattered signal that people are familiar with in

daily experience is originated only from sky illumination, and hence texture distillation is

necessary to recast X. The distillation process is to turn off radiation of other environmental

46



objects than sky in Eq. (S44) and then evaluate the HADAR constitutive equation in the

forward manner without direct emission. Due to the cutoff on number of environmental

objects, δαν,k also contains textures, and hence the final texture is a fusion of the distilled

X̄ and the residue δαν,k, see Extended Data Fig. 1b.

By substituting down-sampled Sαν into Sβν , we have taken into account infinite scattering

(l = ∞). The number of environmental objects k is restricted by the number of channels

C, k − 1 + 2 ≤ C, in order to have a determined solution (number of variables is no more

than number of equations). With the texture model Eq. (S44) ignoring the residue, HADAR

identifiability and material estimation theory in the last section can be readily generalized

to any number of objects and infinite scattering bounces. The unknown parameter set to

be estimated becomes {g, Tα, Vα1, Vα2, · · · , Vαk}.

A. TeX-Net and machine learning

1. Training data and training strategy

Our TeX-Net was trained on the HADAR database (https://github.com/FanglinBao/

HADAR). The HADAR database includes dissimilar scenes like Crowded Street, Highway,

Suburb, Countryside, Indoor, Forest, Desert, etc., covering most common road conditions

that HADAR may find applications in. The 11th dataset is a real-world off-road scene with

heat cube dimension Height ×Width × Channel = 260×1500×49, while the first 10 scenes

are synthetic with heat cube dimension Height × Width × Channel = 1080 × 1920 × 54.

The channels in the real-world scene correspond to the 5th ∼ 53rd channels of the synthetic

scenes. The HADAR database mimics self-driving situations, with the HADAR sensor(s)

either mounted at the positions of headlights, or on the top of the automated vehicles, or

on robot helpers. Each scene has 5 frames for each camera, and there are 30 different kinds

of materials in total in the HADAR database. For the Street, Suburb, Rocky Terrain, and

the Real-World Off-Road scenes, TeX, RGB and IR images are provided for the purpose of

ranging. The Street scene has a long animation version (100 frames, 12 channels). For the

real-world experimental scene, HADAR sensor is a pushbroom hyperspectral imager that

can produce 256 spectral bands. The heat cubes have been interpolated into 49 channels

to match the channels in synthetic scenes. Only 49 channels of all the scenes are used
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to train TeX-Net. Full technical details about the HADAR database, such as, ray depth,

field of view, material properties, and so on, are available in the readme file along with the

database.

We split the HADAR database (11 scenes) into training set (80% data) + validation set

(20% data) to train the TeX-Net with 5-fold cross validation. Due to limited experimental

data, we manually split the database, instead of randomly splitting, to ensure the same

diversity of the validation set and training set. Explicitly, in each fold, one frame per

view of each scene was selected for validation. We used a hybrid loss with half supervised

loss and half physics loss, and we trained TeX-Net for 40K epochs. Since the real-world

scene (260*1500) has a different image size with the synthetic scenes (1080*1920), we used

random crop (256*256) in training. The network was trained using the number of workers

of 8 and a batch size of 20. The learning rate started at 0.001 and dropped by a factor

of 10 at 30000 and 37000 epochs. ADAM optimizer was used with the default momentum

parameters. The used ResNet50 model was pre-trained on the ImageNet dataset. For

synthetic scenes, ground truth temperature and material are synthesized along with the

heat cubes. Thermal lighting factors are solved out with least-squares fitting as the ground

truth. For the experimental scene, we first applied our proposed TeX-SGD (semi-global

decomposition) to generate the TeX vision, as an estimation of the ground truth TeX vision.

TeX-SGD results are then used together with synthetic data to train the TeX-Net. TeX-

SGD is a non-machine-learning approach that decomposes TeX pixel per pixel based on

the physics loss and a smoothness constraint. The hardware environment was Nvidia RTX

A6000 48GB GPU. The TeX-Net codes, pre-trained weights and loss curves are available at

https://github.com/FanglinBao/HADAR/tree/main/TeXNet.

2. Saliency maps

Saliency map shows the relevant region that is used to predict the desired quantity (mate-

rial classification). The Saliency map for material classification e(m) in TeX-Net is evaluated

by Grad-CAM [20] and given in Fig. S15.

48

https://github.com/FanglinBao/HADAR/tree/main/TeXNet


a

b

c

FIG. S15. Saliency map of TeX-Net in supervised learning. The active region in Saliency maps

is localized and highly correlated with the corresponding material region (last column), indicating

that TeX-Net has properly learnt spatial and spectral features for material classification. 3 samples

out of 20 materials are shown. a, Saliency map for class 2, window glass. b, Saliency map for class

5, aluminum. c, Saliency map for class 7, tire. Pred: material index prediction of TeX-Net.

3. Performance and training loss

The supervised training loss and performance of TeX-Net on Street-Long-Animation are

shown in Fig. S16.

In unsupervised learning with physics-based loss, TeX-Net searches the best matching
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a Loss curves

b Ground truth TeX vision

c TeX vision from TeX-Net in supervised learning
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d Ground truth material map e(m)

e Material map from TeX-Net

FIG. S16. a, Loss curves in supervised learning showing the convergence of TeX-Net training. b,

Ground truth TeX vision. c, Output of TeX-Net. d, Ground truth material map. e, Material map

from TeX-Net. The comparisons of TeX-Net output with the ground truth show that TeX-Net

is indeed able to do TeX decomposition. Small prediction errors in temperature lead to texture

error in brightness, and hence there are some noisy spots observed in c. This can be improved by

imposing sophisticated smooth constraint on temperature and harder training in the future. This

training was done on the Street Long-Animation dataset in the HADAR database.

TeX for a given signal S. As in practice, standard materials still bear small amount of

variations in property, the material library is an approximation of the scene into several

material classes. Therefore, the number of materials in the library affects the overall accuracy
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of TeX decomposition. For the HADAR-Street dataset which consists of 20 materials, we

show the role of material library, by approximating the scene into much fewer material

classes and analyzing the overall physics-based loss. For example, in using 3 materials in

the library, we only keep the most distinct emissivities of glass and brass, and approximate

all other materials as blackbody. This approximation will surely lead to biased temperature

and texture, but as the number of materials increases, the loss will decrease. The analysis

is given in Fig. S17. With increasing materials, TeX-Net is trained from beginning, and

training convergence is not significantly slower.

The TeX-Net performance on the HADAR database is shown in Fig. S18. Training loss

curves and the TeX-Net codes are available along with the HADAR database.

While real-world experimental HADAR ranging is shown in Fig. 6 of the main text, gen-

eralized HADAR ranging performance over various scenes tested on the HADAR database

is shown in Fig. S19. HADAR ranging with ground truth TeX vision shows the optimal

performance (Fig. S19a-c). Practical HADAR ranging with predicted TeX vision from the

TeX-Net is also shown in comparison with the optimal performance (Fig. S19d). Ranging

with both ground truth and predicted TeX vision confirm our argument that ‘HADAR sees

depth through the darkness as if it were day’. We used DeepPruner (pre-trained on the

SceneFlow dataset) for binocular stereovision.

B. Analytical inverse functions, Least-squares estimator, and the TeX-SGD

(Semi-Global Decomposition)

Thermal infrared signatures of materials usually have spectral width around 10 ∼

50 cm−1, while temperature feature in the blackbody radiation spectrum has a spectral

width around 300 cm−1. In the simplest nontrivial model (k = l = 1, the rest of the

environment is deep space of zero radiation) of heat signal we demonstrate in this paper,

Sν = eν(m)Bν(T ) + [1 − eν ]V0Bν(T0), approximately only S and e will survive when we

take derivative with respect to wavenumber ν. Here, subscripts are occasionally suppressed

without risk of confusion. Hence, we have

[S/(1− e)]′ = [e/(1− e)]′Bν(T ), (S46)
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a

b

FIG. S17. Physics-based loss decreases as the number of materials in the library increases. a,

materials are added into the library with a greedy approach, and pixels are classified into those

material classes based on visual similarity. Temperature and thermal lighting factors are solved out

accordingly. b, Pixels are classified into material classes with neural network (TeX-Net). TeX-Net

finds more accurate TeX decomposition, and again, we can see that with more materials in the

library the physics-based loss is lower. The error in (b) after 5 materials is noise.

where prime indicates derivative with respect to wavenumber. Since S is observed and e

can be estimated with a material classifier, T can be solved out in the above equation and
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Ground truth TeX vision TeX vision from TeX-Net Ground truth TeX vision TeX vision from TeX-Net

FIG. S18. TeX vision comparison between the ground truth and TeX-Net output. TeX-Net was

trained with hybrid loss, an equal-weight combination of supervised loss and the physics-based loss.

The HADAR database was split into training set (80% data) and the validation set(20% data) for

5-fold cross validation. The TeX-Net was trained with 40K epochs.

consequently V0 can be solved in Sν ,

V0 =
Sν − eνBν(T )

(1− eν)Bν(T0)
. (S47)

At last, X =
∫
V0Bν(T0)dν can be constructed. Analytical inverse functions are only valid

for simple scenes (k = l = 1) with high signal-to-noise ratio. Generically, they suffer from

noise due to differentiation. With multiple scattering, multiple environmental objects, or if

the heat cube is only taken with broadband filters (not given in wavenumber), analytical

inverse functions are not feasible.

We note that noise feature size is given by the spectral resolution. To keep the feature

scale of thermal infrared signatures away from noise and temperature features, spectral

resolution of 1 cm−1 or below is desired for a given noise level. If the measurement time is
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Overall performance on 

various scenes (disparity)
Density Mean error (px)

Accuracy (%)

𝜏 = 1 𝜏 = 3 𝜏 = 5 𝜏 = 10

Thermal 

vision + AI

Ground 0.5 62.66 13.44 25.66 30.91 37.88

Entire image 1 39.05 26.50 41.16 46.34 52.92

RGB vision 

+ AI

Ground 0.5 1.39 37.98 96.54 98.04 99.24

Entire image 1 6.12 43.36 83.88 86.27 88.79

TeX vision 

+ AI

Ground 0.5 1.38 38.23 96.47 98.22 99.46

Entire image 1 2.53 47.91 90.78 93.68 96.13

TeX vision at night

Thermal (IR) vision at night Depth derived from thermal vision

Depth derived from TeX vision

Ground truth depth (meter)

5

160

a

RGB vision in daylight Depth derived from RGB vision

c

b

TeX_night ~  RGB_day >  IR_night

Practical vs. optimal 

performance
Density Mean error (px)

Accuracy (%)

𝜏 = 1 𝜏 = 3 𝜏 = 5 𝜏 = 10

TeX vision 

(GT)

Ground 0.5 1.24 55.09 95.87 97.53 99.20

Entire image 1 3.08 55.05 87.28 89.97 93.22

TeX vision 

(TeX-Net)

Ground 0.5 1.33 52.43 95.91 97.55 98.85

Entire image 1 5.15 44.29 77.98 81.23 85.39

d

FIG. S19. General HADAR ranging performance over various scenes. (c) corresponds to the ground

in table (b). The metrics of TeX comparable with RGB and beating IR demonstrates that HADAR

ranging at night beats thermal ranging and is comparable to RGB stereovision in daylight. Table

(d) shows the comparison of practical HADAR ranging (based on TeX-Net outputs) against the

optimal HADAR ranging (based on ground truth TeX vision). Practical HADAR ranging shows

a near-optimal ranging performance. Table (b) is based on the Street-Long-Animation, Suburb,

and Rocky Terrain scenes in the HADAR ranging dataset in the HADAR database. Table (d) is

based on the Suburb and Rocky Terrain scenes, as Street-Long-Animation has less spectral bands

and is not included in training TeX-Net. TeX-Net statistics were done with 5-fold cross validation.

Ground: bottom half of the image. Density: fraction of the overall image area for which statistics

is analyzed. Mean error: the mean absolute per-pixel disparity error with respect to the ground

truth. Accuracy: fraction of pixels for which the estimated disparity is within τ pixels of the

ground truth values.
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fixed, optimal bandwidth for TeX decomposition is a trade off between spectral resolution

and signal-to-noise ratio and is problem specific.

In our HADAR prototype-1 experiments, we consider two significant environmental ob-

jects (k = 2, l = 1),

Sν = eν(m)Bν(T ) + [1− eν ][V1e1Bν(T1) + V2e2Bν(T2)], (S48)

where e1 and T1 are emissivity and temperature of the cloudy sky, and e2 and T2 are emissiv-

ity and temperature of the ground. Subscript α is suppressed without risk of confusion. The

unknown parameter set is {m,T, V1} with V2 = 1− V1. From Sν we construct the expected

signal on the sensor, C ′(xi, yi, q). The mathematical relation from Sν to C ′(xi, yi, q) is given

in Sec.SIVA. Heat cube of 10 filters are observed, C(xi, yi, q), q = 1, 2, · · · , 10. Least-squares

error, ||C ′(xi, yi, q) − C(xi, yi, q)||, is used to search the unknown parameter set. With the

Least-squares estimator, we verified that TeX decomposition is crucial for vision applica-

tions and goes beyond the traditional TE (temperature-emissivity) separation approach.

TE separation completely ignores the environmental radiation processes or assumes spa-

tially uniform environmental heat signal. In stark contrast, TeX decomposition captures the

interplay between the complex real-world scene and its non-uniform environment through

the HADAR constitutive equation. Fig. S20 shows that TeX decomposition not only cap-

tures local surface normals of objects in the scene, but also gives more accurate material

classification than the TE model.

In our HADAR prototype-2 experiments, we consider two significant environmental ob-

jects (k = 2, l = ∞). We have proposed a non-machine-learning algorithm for TeX decom-

position — the TeX-SGD (Semi-Global Decomposition). For any given parameter set, we

reconstruct the heat signal, S̃αν , to define the local cost, Clocal = ||S̃αν − Sαν ||. Further-

more, we impose a global cost to ensure smoothness of the temperature map, Cglobal(x, y) =

p×|t(x, y)−median(N(x, y))|/std(N(x, y)), where p = 0.1 is the global penalty and N(x, y)

is a 3× 3 neighbouring window of the temperature map around pixel (x, y). The total cost

function C = Clocal + Cglobal is used to search the unknown parameter set and decompose

T, e and X.
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FIG. S20. Least-squares estimator verifies that TeX decomposition is a more accurate heat signal

model than the traditional TE separation. TeX model gives textures while TE model ignores

textures. Moreover, TeX model can predict correct material classifications, while the TE model

returns wrong results. Comparisons are made for some typical pixels in the HADAR prototype-1

outdoor experiment at winter night. Blue stars: cost values for each possible material candidate.

Red circles: predictions given by minimum costs.

C. AGC on TeX vision

Originally, automatic gain control (AGC) is a nonlinear mapping of raw thermal data

to grayscale values between 0-255 that can be visualized on a computer screen. For more

details, see FLIR AGC at https://flir.netx.net/file/asset/15755/original. The

spirit of AGC can be adapted to HADAR to improve visual effects of TeX vision, and

nonlinear mapping can be performed on individual channels of T , e, and X. In TeX vision,

hue is the material label normalized inbetween 0 and 1. One can manually assign discrete

values to hue for each material, to customize the color representation. For temperature, it

usually has lower and upper bounds in the real world. For example, the lowest temperature

and highest temperature of a given city are usually on record. Therefore, one can trim
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temperature with the bounds and linearly transform it inbetween 0 and 1. The distilled

texture (see Extended Data Fig. 1b) is based the thermal lighting factors in Eq. (S44) and

the k-residue δαν,k given in Eq. (S45). We take the logarithm of X, rescale it inbetween

0 and 1, and apply a nonlinear AGC for visualization. When sky is not specified as one

environmental object, only the residue remains in the distilled texture. We observed that

when the sensor is of low noise or when using TeX-Net, residue alone gives vivid textures.

However, when the sensor is noisy and when using TeX-SGD, thermal lighting factor of the

sky is usually needed for fusion.

Explicitly, here we show how a TeX vision image is formed from the T (x, y), e[m(x, y)],

and X(x, y) output by TeX decomposition (through TeX-Net or TeX-SGD). (1), The ma-

terial library M comes with a hue library, H. For each material in M, we’ve assigned to

it a hue value corresponding to its typical color as can be seen in daylight, so that the

TeX vision will be similar to the familiar RGB image. For example, a hue value 90/255

corresponding to ‘Green’ is assigned to the material ‘Vegetation’, a hue value 160/255 cor-

responding to ‘Blue’ is assigned to the material ‘Water’, and a hue value 40/255 corre-

sponding to ‘Yellow’ is assigned to the material ‘Sand’. The hue channel of the TeX vision

image is given by the following matlab pseudo code, H = reshape(H(m), size(m)). (2), The

saturation channel of the TeX vision image is given by the following matlab pseudo code,

S = rescale(T, 0, 1, ‘InputMax′, tMax, ‘InputMin′, tMin), with user customized temperature

range. (3), The Brightness channel of the TeX vision image is given by the following matlab

pseudo code, V = adapthisteq(rescale(X, 0, 1)). (4), Finally, the TeX vision image is given

by a color space transform, texIMG = hsv2rgb(cat(3,H, S,V)). Sample data and codes are

available along with the HADAR database at https://github.com/FanglinBao/HADAR.

Fig. S21 further shows an example of TeX vision image, in comparison with thermal vision

and RGB vision.

Traditional AGC tries to extract signal variations by subtracting a dominant local signal

floor, since it is the dominant and uniform signal floor that visually fades signal variations

and renders thermal images textureless. The dominant signal floor is the unknown direct

emission and unwanted scattering which change smoothly over the image. Traditional AGC

or pseudo coloring are empirical approaches to estimate the signal floor, while HADAR is

to estimate the signal floor according to the heat signal model. Furthermore, using the

distilled texture X̄ as X is also consistent with the spirit of AGC. In this point of view, it
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is not surprising that HADAR TeX vision can give better visual contrast than traditional

AGC. In current TeX-Net training, we observed that T and V are not so accurately learnt

for experimental scenes, and hence textures all remain in the residue. Without texture

distillation, the current TeX-Net amounts to be a learning-based approach to estimate the

signal floor and extract textures.

D. Pseudo-TeX vision

As TeX vision requires the input of hyperspectral heat cubes, we also propose pseudo-TeX

vision to extend its applications to common thermal datasets without spectral resolution.

Existing thermal datasets provide panchromatic thermal images, Sα =
∫
Sανdν. Firstly,

for near-black objects, eν → 1, Sαν = eανBν(Tα) + [1 − eαν ]Xαν ≈ Bν(Tα), and hence

thermal image is widely taken as the temperature contrast. Standard thermal cameras can

do the inverse transform and estimate the temperature. Therefore, we use the thermal

image itself to approximate temperature T . Secondly, existing semantic segmentation based

on thermal vision can extract spatial patterns from thermal images and estimate semantic

categories. Even though this segmentation is vision-driven, we can use it to approximate

material category e(m). Thirdly, AGC (automatic gain control) can improve visual contrast,

maximizing the usage of residual texture in sensor data. We use it to approximate texture

X. Putting them together, we formally get TeX vision, see Fig. S22, though the information

contained in this pseudo-TeX vision is no more than the original thermal vision. Pseudo-

TeX vision uses information of different levels (spatial pattern, rough temperature, and weak

variation) to extrapolate the material and geometry information and might find applications,

e.g., in practical ranging, see Fig. S23.

E. Physics-driven semantic segmentation, object detection and visual object

tracking

Here, we use a customized non-machine-learning algorithm, in addition to existing pre-

trained neural network models, to demonstrate physics-driven semantic segmentation, object

detection, and visual object tracking. We emphasize that machine-learning semantic seg-

mentation and detection based on TeX vision (instead of traditional RGB vision, thermal
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vision, or point cloud) present a new research frontier and deserve future studies.

For object detection in TeX vision, we can extract the region corresponding to the desired

material according to the material map in the hue channel. Existing algorithms can be

applied to the specific region for detection, instead of the entire image, see Fig. S24. This

approach combines intrinsic material signatures with spatial patterns for detection and can

distinguish human vs. robot, which is otherwise impossible. Here, Fig. S24 demonstrates

sequential detection by performing detection on each individual material region. We believe

that simultaneous detection can be achieved in the following approaches. (1) TeX vision

images can be used as input to train a neural network for simultaneous detection. (2) Our

TeX-Net with the physics model can be utilized as a backbone to design and train novel

end-to-end networks for simultaneous detection, and it is not necessary to explicitly output

TeX vision. These approaches deserve future studies.

The material map e(m) itself is not a semantic segmentation, but each semantic category

is usually a combination of several materials. For example, in the following Fig. S25a,

material ‘road’, ‘pavement’, ‘sky’, and ‘human’ can be directly mapped to corresponding

semantic categories. The semantic category ‘car’ is a combination of materials of ‘car paint’,

‘window glass’, ‘headlights’, ‘rubber tire’, ‘wheel’, and ‘aluminum (logo)’. The semantic

category ‘robot’ corresponds to material ‘aluminum’. And semantic category ‘building’

consists of ‘window glass’, ‘brick’, ‘concrete’, ‘steel’, and so on. We can use the following

heuristic algorithm 4 to transform a HADAR material map into a semantic segmentation

in Fig. S25b. Worth noting is that material ‘aluminum’ in the car is enclosed by other

components like ‘car paint’, but ‘aluminum’ in robot is open (not enclosed). This pixel

interaction among neighboring pixel arrays is used to heuristically transform a material

map into a semantic segmentation. More sophisticated algorithms to transform material

map into semantic segmentation deserves future studies.

Visual object tracking based on TeX vision and corresponding semantic segmentations

has been tested for a car and a pedestrian on the Street-Long-Animation scene. py-

tracking implementation (https://github.com/visionml/pytracking) of the ECO [21]

method was used in the test. Robust tracking results show the applicability of TeX vi-

sion for visual object tracking. Tracking videos are available along with TeX videos at

https://github.com/FanglinBao/HADAR.
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a Raw thermal vision (ghosting effect)

c Optical imaging

b HADAR TeX vision

FIG. S21. HADAR sees through the darkness as if it were day. a, Ghosting thermal vision of a

desert scene at night, synthesized by path tracing. b, HADAR TeX vision of the desert scene, with

a library of 6 materials, sky: black, rock: dark red, sand: yellow, vegetation: green, bark: brown,

water: blue. Color hue to present these 6 materials in TeX vision are determined according to daily

experience. c, Optical RGB vision of the desert scene in daylight. HADAR TeX vision recovers

textures and distinguishes different materials. It can be clearly seen that TeX vision captures the

scene as if it were day.
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FIG. S22. Pseudo-TeX vision of the a sample thermal image from FLIR thermal dataset https:

//www.flir.com/oem/adas/adas-dataset-form/. Pseudo-TeX vision extracts information from

multiple levels, such as, spatial pattern, absolute value, and spatial variation, and represents them

in a compact and reader-friendly form.
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a Thermal vision

100

300

500

c Pseudo-TeX vision

b Disparity from thermal vision

d Disparity from pseudo-TeX vision

e Ground truth disparity

FIG. S23. Disparity in stereo matching based on raw thermal vision and pseudo-TeX vision.

Pseudo-TeX vision gives more accurate disparity estimation than raw thermal vision closer to the

ground truth. Disparity estimation is done with DeepPruner. Even though pseudo-TeX vision is

derived from the same data as the raw thermal vision, a more sensitive representation of features

can yield better performance.

a TeX vision

c People detection in the ‘aluminum’-material region (robot detection)

b People detection in the ‘human’-material region (human detection)

FIG. S24. Demonstration of physics-driven people detection. Instead of detecting people over

the entire image, we extract the region corresponding to the desired material and then perform

detection with existing algorithms in the literature.
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a HADAR material map e(m)

Road

Pavement

Car

Human

Robot

Building

Sky

b HADAR semantics

FIG. S25. Demonstration of physics-driven semantic segmentation. HADAR material map (a) is

transformed into a semantic segmentation (b) using algorithm 4.
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Algorithm 4: Physics-driven semantic segmentation

Input: The material map mxy, the semantic categories Ω = {ω1, ω2, · · · , ωn}, the material

combination for each semantic category ωi ← {mi}, and in each semantic category,

the property of each material η indicating it is enclosed (η = 1) or not (η = 0).

1 for each pixel (x, y)

2 Initialize the probability vector, Pn×1 = 1/n;

/* P(i) is the probability in semantic category i, i = 1, 2, · · · , n */

3 for each semantic category ωi

4 if mxy 6∈ ωi :

5 P(i) = 0.

6 end

7 end

8 Normalize the probability vector, P = P/Sum(P);

9 if max(P) = 1 :

10 Semantic segmentation Sxy = argmaxi(P).

11 else:

12 Get left and/or up neighbor-pixel category S′;

13 if P(S′) 6= 0 :

14 Sxy = S′.

15 else:

16 Sxy = i, where in ωi, η = 0 for mxy;

17 end

18 end

19 end

/* The following procedure is for smoothing */

20 for each pixel (x, y)

21 Sxy = S′, where S′ is the mode of the local 5× 5 pixel array. Symmetric padding is

used for boundaries;

22 end

Output: Semantic segmentation map Sxy.
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SIV. HADAR PROTOTYPE-1: EXPERIMENTS

The HADAR prototype-1 is based on the FLIR A325sc thermal camera and a set of filters

in the long-wave infrared (LWIR). While the experimental setup with schematic diagram

is shown in Extended Data Fig. 10, the corresponding heat signal model for each detector

is shown in Fig. S26. The collected signal consists of multiple contributions. The rest of

this section shows the calibration to get the signal from the scene out of the total collected

signal.

𝐾𝑞

𝐷

𝜉
Scene 𝑆𝛼𝜈

CameraFilter wheel
Mirror image of

the camera

𝒞(𝑥𝑖 , 𝑦𝑖 , 𝑞)

𝐾𝑞

𝐷

𝜉Reference 𝐵𝜈(𝑇0)

𝒞0(𝑥𝑖, 𝑦𝑖 , 𝑞)

a

b

FIG. S26. Heat signal models of the HADAR prototype-1 in experiments (a) and calibration (b).

C(xi, yi, q): Camera signal with the q-th filter. ξ(xi, yi): dark noise pattern thermally excited or

from the radiation of the camera box. D(xi, yi): spatial radiation distribution of the filter wheel.

Kq(xi, yi): back reflection distribution of camera’s self emission. The reference object is a standard

extended blackbody (EOI. Inc. DCN1000N7) at temperature T0. Bν is the blackbody radiation.

The mirror image of the camera is formed by filter reflections.

A. Dark noise calibration

To remove the dark noise contributions of D(xi, yi), Kq(xi, yi) and ξ(xi, yi), we use a

uniform reference object. On one hand, the total collected signal for a scene Sαν is, on
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average, given by

C(xi, yi, q) =

∫
Rνη(xi, yi)TqνSαν dν +Kq(xi, yi) + [1− η(xi, yi)]D(xi, yi) + ξ(xi, yi). (S49)

Here, we have followed the heat signal in Sec. SI and let the measurement time (a) and

camera collection coefficient (λν/Sν) be absorbed in Rν . The filter wheel in front of the

camera amounts to be an out-of-focus optical diaphragm affecting the transmittance, as

observed in experiments. We use the relative transmittance η(xi, yi) normalized by the

central pixel to describe the out-of-focus diaphragm effect. On the other hand, the total

collected signal for the reference object is given by

C0(xi, yi, q) =

∫
Rνη(xi, yi)TqνBν(T0) dν +Kq(xi, yi) + [1− η(xi, yi)]D(xi, yi) + ξ(xi, yi).

(S50)

Subtracting Eq. (S50) from Eq. (S49) immediately gives

C(xi, yi, q)− C0(xi, yi, q) = η(xi, yi)

∫
RνTqν [Sαν −Bν(T0)] dν. (S51)

Note that, in principle, dark noise contributions can be characterized individually. However,

due to the uncooled micro-bolometer used in FLIR A325sc and the heat exchange of the

detector with the scene, D(xi, yi), Kq(xi, yi) and ξ(xi, yi) change from scene to scene. There-

fore, using a reference object proves more convenient in our experiments. Once the detector

is under temperature control in future researches, the reference object is unnecessary. Also,

the reference object could be any calibrated object other than a standard blackbody source.

To ensure the dark noise is stable in C(xi, yi, q) and C0(xi, yi, q), a gold mirror is mounted

on the filter wheel to monitor the status of the detector in real time. Data is taken as valid

only when the mirror signal is stable.

B. Characterization of filters and the optical diaphragm effect of the filter wheel

The transmittance curves Tqν of 10 used filters in our HADAR prototype-1 experiments

are characterized by iS50 FTIR spectrometer and shown in Fig. S27. The optical diaphragm

effect of the filter wheel, η(xi, yi), is characterized by imaging the extended blackbody at

various temperatures. When Sαν becomes spatially uniform, η(xi, yi) can be obtained by

normalizing C(xi, yi, q) − C0(xi, yi, q) with respect to the central pixel. The characterized

η(xi, yi) is shown in Fig. S28.
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FIG. S27. Filter transmittance characterization. Filters are from Spectrogon.

FIG. S28. Characterization of the optical diaphragm effect of the filter wheel. The transmittance

is asymmetric because of the imperfect alignment between the filter wheel and the camera.

C. FLIR-A325sc response curve calibration

The spectral response curve Rν of the FLIR-A325sc is calibrated around the central pixel

with the extended blackbody. We scanned the temperature of the blackbody from 35 C◦

to 110 C◦ at the step of 2.5 C◦, and we recorded corresponding 31 heat cubes C(xi, yi, q).

Now, with the above calibrations, Rν becomes the only variable in Eq. (S51). In total, we
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FIG. S29. Calibration of the spectral response curve of the FLIR A325sc camera.

have (31− 1)× 10 = 310 equations like Eq. (S51), and we further average them over xi and

yi. From there, we solve 30 Rν values in the spectral range 595 ∼ 1340 cm−1 by the least-

squares linear regression, with the typical response curve provided by FLIR as the initial

solution. An additional smooth-curve constraint is used to ensure that the response curve is

a smooth curve. The calibrated spectral response curve is normalized and shown in Fig. S29,

in comparison with typical response curves. The normalization constant is calibrated to be

25010.

D. Spectrum reconstruction

First, we emphasize that spectrum reconstruction is not essential for TeX vision nor

HADAR. It is useful when the explicit spectral resolution of radiance is desired, e.g., to help

estimate the material library or environmental radiance in real-world experiments.

When sufficient filters are available, reconstruction of Sαν from C(xi, yi, q) is similar to

the calibration of Rν from C(xi, yi, q) mentioned above. One can use the least-squares

linear regression to solve Sαν [22], which is more robust than the direct matrix-inversion

approach. Since the commercially available filters in the LWIR are under-developed and

only 10 significantly-independent filters are found for our proof-of-concept experiments, we

do not evaluate Sαν directly from 10 equations. Instead, we estimate the unknown parameter

set {mTV } according to the heat signal model in Sec. SI, with the help of a material library

and the least-squares regression. Fig. S30 shows the library of spectral emissivity used in
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a

b

FIG. S30. Material library used in our experiments. a, Emissivities characterized by Nicolet iS50.

b, Emissivities drawn from the NASA JPL ECOSTRESS spectral library. bg: modelled by dry

grass to represent the whole background; paint: modelled by black paint on aluminum to represent

the car; card: modelled by black spray; metal: modelled by weathered aluminum; skin: modelled

by a constant 0.95; fabrics: modelled by a constant 0.88. silica in b is generated according to

fluctuation-dissipation theorem with tabular refraction index data [23].

our experiments in this paper. The least-squares estimator is described in Sec. SIIID.

E. Stereo calibration

A checkerboard was used as our calibration pattern, see Fig. S31. The checkerboard is

3D printed with alternating square holes, placed in front of an extended blackbody source.

The stereo pairs of images of this checkerboard are taken from multiple orientations to get

HADAR stereo calibrations.

Considering such a calibration target, stereo images with multiple orientations were taken.

These images were passed to MATLAB Stereo Camera Calibrator App in order to calibrate

the stereo cameras. The results of the calibration are shown in Tabs. S6 and S7. The

MeanReprojectionError from the calibration was 0.0746 pixels.
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a Left b Right

FIG. S31. Customized checkerboard for HADAR stereo calibration.

Camera index Intrinsic Matrix

Camera 1


737.8141 0 0

0 737.6437 0

174.3212 121.0815 1



Camera 2


739.4045 0 0

0 745.8156 0

133.6238 163.8408 1


TABLE S6. Intrinsic Parameters of stereo cameras.

Camera index R T

Camera 2


0.9989 6.766e− 4 −0.0479

0.0016 0.9989 0.0478

0.0479 −0.0478 0.9977



−278.8470

−9.3732

17.1767


TABLE S7. Extrinsic Parameters of stereo cameras. R and T denote the Rotation and Translation

of Camera 2 with respect to Camera 1.
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SV. HADAR PROTOTYPE-2: EXPERIMENTS

The HADAR prototype-2 is based an LWIR hyperspectral imager that is adopted in

the DARPA (The Defense Advanced Research Projects Agency) IH (Invisible Headlights)

project. The sensor has been calibrated, and the experimental data is available to the

authors through the project.

A. Denoise

This HADAR sensor is a pushbroom sensor, which suffers from horizontal streak noise.

This is due to dynamically drifting gain and offset of the sensor pixels. We remove the steaks

by first detecting streaks and then performing a linear transform to correct gain and offset.

The code for such a denoising algorithm is available along with the HADAR database at

https://github.com/FanglinBao/HADAR, see TeX.destriper in the TeX matlab class. After

denoising, the amount of remaining noise is introduced to RGB images as well, to define a

fair comparison of HADAR ranging.

B. Extrinsic calibration between LiDAR and imaging sensors

In IH test experiments, square checkerboards have been adopted for calibrations. How-

ever, due to multiple factors, such as, symmetric and sparse checkerboard grids (2 × 2),

the long distance between the checkerboards and the sensors, checkerboards being partially

blocked by off-road objects, etc., automatic detection of checkerboard corners doesn’t work in

practice. Instead, we manually selected checkerboard corners for RGB images and hyperspec-

tral data. For high-resolution LiDAR point cloud, we automatically detected checkerboard

planes within manually refined regions, manually removed obvious outlier plane points, ex-

tracted corners, and then only kept the corners that are reasonably accurate. The rigid

transform was computed with the RANSAC + P3P algorithm in matlab LiDAR toolbox.

The calibration results are shown in Fig. S32. Note that the calibration error will lead to

inaccurate ground truth LiDAR depth and hence decrease the depth accuracy enhancement

of TeX vs. IR in Fig. 6 of the main text.
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Thermal (IR) vision at night

TeX vision at night

LiDAR depth (meter)

RGB vision in daylight
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FIG. S32. LiDAR-Sensor calibration to get the ground truth depth in off-road experiments.

C. Semantic library estimation

In real-world off-road scenes, two or more materials may mix together with a smooth-

varying mixing ratio. The exact material library may be difficult or even impossible to

collect. Instead of using the material library, here we generalize our HADAR theory with a

semantic library that can be estimated on-the-fly from the heat cube. Within the semantic

library, each curve represents an approximated/averaged emissivity for several similar ma-

terials described by the same semantic class. For example, a gravel road by a grass lawn

may consist of soil, sand, or little stones that cannot be spatially resolved by sensor pixels.

In this case, each road pixel may exhibit a slightly different spectral emissivity curve, but

their emissivity curves are still distinct with the grass. Therefore, using averaged emissiv-

ity curves can capture the semantics of road vs. grass, while the deviation from the exact

emissivity will become a perturbation to the temperature and thermal lighting factors, or

remain in the physics-based loss, res. This error will diminish as the number of semantic

categories in the library increases.

In IH test experiments, the exact material library was not collected. We used a custom-
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designed TES (temperature emissivity separation) algorithm to estimate emissivity per pixel.

We adopted the NEM and RAT modules from the original TES algorithm that can be

found in Ref. [24]. These modules output the relative profile of the spectral emissivity,

leaving one parameter – the absolute magnitude – unfixed. After that, the original TES

algorithm uses an empirical formula to determine temperature and the magnitude of spectral

emissivity. The empirical formula is based on big data from space/air-based applications

and hence not applicable to our current HADAR experiments. Instead, we then used the

K-means clustering to categorize materials and derive the averaged emissivity profile for

each cluster. We note that multiple pixels of the same cluster share the same spectral

emissivity magnitude. Therefore, we estimated the emissivity magnitude and temperature

by least-squares fitting according to the HADAR constitutional equation. The averaged

spectral emissivity for each cluster form the semantic library of the scene. The resulting

semantic library is available along with the HADAR database. In this work, we manually

chose the K parameter for K-means clustering. This impacts the categorization process and

will eventually lead to some errors in the material and semantic maps. To minimize this

error, a potential approach deserving future investigations is to scan different K parameters,

estimate semantic library and TeX vision for each K, and then choose the solution with

lowest physics loss.

The sky radiance was not collected in IH experiments as well. We read the heat signal

off the reflecting checkerboard (which was facing the sky) to approximate the sky radiance.

Since the pushbroom sensor was used along with multiple other sensors (irrelevant to this

work) in the IH project, the data collection took so long that we observed significant changes

of the estimated sky radiance throughout the experiment. The inaccurate sky radiance

estimation causes performance fluctuations of TeX vision. We emphasize that this practical

restriction can be relieved with a proper on-site experimental characterization of the sky

radiance.

D. Texture comparison and analysis between TeX vision and RGB vision in ex-

periments

As explained in Sec. SID, textures in RGB vision and TeX vision images will be different,

due to different working wavelength and different material responses in these two spectral
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ranges. Furthermore, the following factors will also lead to different textures in two different

imaging modalities. (1) Related to the working wavelength, the pixel size of a thermal

infrared sensor is of the order of 20µm, while the pixel size of an RGB camera is below

2µm. The ∼ 10× difference in working wavelength and pixel size leads to a poorer spatial

resolution and less fine textures in TeX vision. (2) The electronic noise (NEP) of state-of-the-

art thermal sensors is much higher than that of state-of-the-art RGB cameras. This means

RGB images usually have a higher signal-to-noise ratio and more subtle textures. Especially

in hyperspectral imaging, there is systematic noise like horizontal streaks in images for

‘pushbroom’ sensors, which will pollute real textures. (3) The state-of-the-art hyperspectral

imagers are much slower than regular RGB cameras. The former takes several seconds

to form one image, while the latter takes only milliseconds. Motion blur in real-world

scenes becomes severer in current TeX vision than RGB vision. (4) The state-of-the-art

hyperspectral imagers are usually focal-plane arrays, which means the sensor is focusing

at infinity. While RGB cameras can focus on the surrounding scenes, focus blur becomes

severer in current TeX vision than RGB vision. All these factors have been observed in the

TeX vision obtained in real-world experiments, as shown in Fig. S33.

To define a fair comparison between HADAR ranging and RGB stereovision in Fig. 6

of the main text, we have introduced the same amount of noise of the HADAR data into

RGB images, and we have down-sampled the RGB images to match the spatial resolution

of HADAR sensor.

It can be seen in Fig. S33c-d that TeX vision can even have a larger texture density than

original RGB vision. When the same amount of noise of the HADAR data is introduced

into RGB images, and when the RGB images are down-sampled to match HADAR spatial

resolution, the mean texture density of the RGB images changes to 0.0975, 0.0624 and

0.1553, respectively. The observation of ‘TeX vision has more textures than RGB vision’

still holds. Possible reasons for more textures in TeX vision include that (1) remaining

HADAR sensor noise in the heat cube gets amplified in generating the TeX vision. (2) Poor

ambient illumination (shadow) exists in RGB images. (3) HADAR sensor and RGB cameras

have different field of view. And (4) More textures may come from more spectral bands in

HADAR than RGB cameras. The last case suggests that it may be possible for HADAR

ranging at night to even beat RGB stereovision in daylight. Deeper analysis and verification

deserve extensive future studies.
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a TeX vision at night (TeX-Net)

d RGB vision in daylight and corresponding texture density

Focus blur

Poor spatial resolution

Remaining streaks

b TeX vision at night (TeX-SGD)

Mean std = 0.3283

0.1677Mean std = 0.0941 0.0702

c TeX vision at night (TeX-SGD) and corresponding texture density

0

0.4

0.8

1.2

FIG. S33. Texture comparison between TeX vision and RGB vision. a-c show the typical sensor

influences on observed textures. c-d show the texture quantification (with the standard deviation

metric) and comparison between TeX vision and RGB vision.

E. TeX-RGB image fusion in comparison with IR-RGB image fusion

The fusion of thermal images and optical images has been a common practice in real

scenes. In the literature, thermal images have been fused with optical images with poor am-

bient illuminations for night-vision enhancement, and the goal is to integrate complementary

information from different sensors, i.e., the detailed textures in optical images and target

highlighting in thermal images. The multi-sensor fusion approach may have comprehensive

information as HADAR does but cannot be fully passive. Explicitly, the visible-infrared im-

age fusion is generically pseudo-passive as visible images rely on ambient illumination. For
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completely dark scenes, such as our real-world off-road scene at night, there is absolutely no

information in visible images and hence the visible-infrared image fusion is not better than

the thermal vision. In our work, we focused more to demonstrate the advantage of HADAR

vs. thermal sensing which are both based on heat signal, since our work aims to demon-

strate that we can get rich information out of heat signal which was previously thought to

be impossible. When full passivity or scalability is not required and more sensors can be

considered in a multi-sensor fusion approach, HADAR can replace the traditional infrared

sensor and work together with other sensors like the visible RGB camera. Explicitly, to

compile RGB with TeX, one can following the procedures below. (1) Convert RGB images

to grayscale. That is, keep the textures from material response in the visible-light range

(which is complementary to textures in the infrared range), and discard the color. The color

from TeX vision will be adopted since that is more meaningful. (2) Fuse X channel with

grayscale optical images. (3) Use the fused image to replace the original X and, together

with T and e channels, form the new ‘enhanced’ TeX vision images. The TeX-RGB fusion

is shown in Fig. S34, in comparison with IR-RGB image fusion. Other images like degree-

of-linear-polarization (DoLP) can also be fused with X to form an ‘enhanced’ TeX vision.

F. TeX vision comparison between two HADAR prototypes

Here, Fig. S35 shows the visual comparison of TeX vision obtained by our two HADAR

prototypes for night scenes. This provides the intuitive understanding of TeX vision with

different sensor performance and cost settings.
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Visible (RGB)

IR

Visible-infrared fusion

Visible (grayscale)

TeX

Visible-TeX fusion

FIG. S34. Image fusion of TeX + RGB, in comparison with IR + RGB.

TeX vision by HADAR prototype-1

TeX vision by HADAR prototype-2

FIG. S35. TeX vision comparison between two HADAR prototypes.
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SVI. FTIR SPECTROMETER CALIBRATION

According to the heat signal in Eq. (S9), the electronic signal is on average given by

Cq =

∫
[Tqν(RνSν −RνKν) +RνKν ] dν + ξ. (S52)

Here, Rν has absorbed the measurement time (a), optical efficiency ηo
ν , and camera col-

lection coefficient (λν/Sν). FTIR uses interferometer, and Tqν amounts to be a Fourier

transform. By inverse Fourier transform, FTIR outputs (RνSν − RνKν) as the measured

‘spectrum’ which consists of a negative component from the back reflection of the detector’s

self radiation Kν . Conventionally, one usually rewrites −RνKν as the effective dark noise

ξν . Therefore, the FTIR output has the following form

Cν = Rν {eν(m)Bν(T ) + [1− eν(m)]Xν}+ ξν . (S53)

A. System response and dark noise

For blackbodies, eν = 1, Eq. (S53) reduces to

Cν(T ) = RνBν(T ) + ξν , (S54)

whose two unknown factors Rν and ξν can be fitted out by data for a series of T :

Rν =
Cν(T1)− Cν(T2)

Bν(T1)−Bν(T2)
, (S55)

ξν = Cν(T1)−RνBν(T1). (S56)

Here, T1 and T2 are not restricted and T1 − T2 could be very large as long as the blackbody

assumption holds true. Linear regression with more temperature data would be helpful.

B. Environment radiation

The previous subsection obtains Sν from Cν , Sν = (Cν − ξν)/Rν . For non-blackbodies,

assuming emissivity eν is slow-varying with respect to T , we can deduce eν from two closely

spaced temperatures T1 and T2, 0 < T1 − T2 � T2,

eν ≈
Sν(T1)− Sν(T2)

Bν(T1)−Bν(T2)
. (S57)
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Here, T1− T2 should be small because otherwise eν(T1) might be significantly different with

eν(T2). It follows that

Xν =
Sν(m,T2)− eν(m)Bν(T2)

1− eν(m)
. (S58)

Again, linear regression with more temperature data would be helpful.
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[28] A. González, Z. Fang, Y. Socarras, J. Serrat, D. Vázquez, J. Xu, and A. M. López, Pedestrian
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