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ABSTRACT 

Nonreciprocal gyrotropic materials have attracted significant interest recently in material 

physics, nanophotonics, and topological physics. Most of the well-known nonreciprocal 

materials, however, only show nonreciprocity under a strong external magnetic field and 

within a small segment of the electromagnetic spectrum. Here, through first-principles 

density functional theory calculations, we show that due to strong spin-orbit coupling 

manganese-bismuth (MnBi) exhibits nonreciprocity without any external magnetic field and 

a large gyrotropy in a broadband long-wavelength infrared regime (LWIR). Further, we design 

a multi-layer structure based on MnBi to obtain a maximum degree of spin-polarized thermal 

emission at 7 μm. The connection established here between large gyrotropy and the spin-

polarized thermal emission points to a potential use of MnBi to develop spin-controlled 

thermal photonics platforms.  

 

I. INTRODUCTION  

Thermal emission is a ubiquitous physical phenomenon in the environment. Any 

material heated to a non-zero temperature emits thermal photons. Fundamentally, thermal 

emission arises from the underlying fluctuating dipole moments inside the material [1,2]. 

Applications of near- and far-field thermal radiation include radiative cooling [3], thermal 

imaging [4], and energy harvesting [5]. In this regard, the search for infrared thermal photonic 

materials has gained significant interest. Magneto-optic materials [6,7], Weyl semimetals [8], 

topological insulators [9], and nanophotonic structures [10-13] have all been investigated 

recently to achieve control over the spectrum and the spin polarization of thermal radiation.  
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Discovery of materials with strong spin-angular momentum at infrared wavelengths 

will be useful to build polarized infrared light sources for thermal imaging polarimetry [14], 

night visions [15], and infrared chiral spectroscopy [16]. Nonreciprocal materials provide a 

pathway to achieve spin-polarized radiation sources [17]. Indium antimonide (InSb) subjected 

to an applied magnetic field is one of the most popular nonreciprocal media [18]. However, 

for practical applications, it is important to identify materials that exhibit nonreciprocity 

without any applied magnetic fields, especially in the long wavelength infrared (LWIR) regime. 

In this article, we propose manganese-bismuth (MnBi) as a material platform for spin-

polarized thermal photonics, eliminating the requirement of an external magnetic field to 

achieve nonreciprocity. 

 

FIG. 1. (a) The schematic depicts the emission of spin-polarized thermal radiation originating 

from the intrinsic fluctuating dipole moments in a MnBi layer. Spin-polarization of the thermal 

radiation can be quantified by the non-vanishing Stoke parameter S3. Crystal structures of the 

conventional unit cell of the low-temperature phases of MnBi: (b) Stable hexagonal phase and 

(c) Meta-stable cubic zinc-blende phase.  

Manganese-bismuth has attracted significant attention due to its unique magneto-

optic properties [19,20] and large magneto-crystalline anisotropy [21]. Most noticeable 

properties of MnBi include strong spin-orbit interaction [22], exceptionally large Kerr rotation 

[23], high coercivity which increases with temperature [24], and large uniaxial magnetic 

anisotropy [25]. Because of these extraordinary properties, MnBi has been used to fabricate 
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magneto-optical memory devices and permanent magnets [25]. Furthermore, a recent study 

reveals a high anomalous Nernst effect (ANE) in MnBi which leads to a high thermopower and 

high thermoelectric conductivity [26]. Hence, MnBi is a promising platform for energy 

harvesting and cooling devices. The Curie temperature of MnBi is 𝑇𝑐 = 470 K, significantly 

higher than room temperature [27]. Therefore, the material is a room-temperature 

permanent magnet [22]. Previous works have reported the electronic  [19,22,28-42] as well 

as the optical and magneto-optic properties [19,30,32,34,42]. However, the nonreciprocity in 

MnBi for thermal photonics has not yet been investigated. 

In this article, we show that a strong spin-orbit-coupling (SOC) in MnBi results in a 

large gyrotropy over a wide range of the LWIR regime. We perform first-principles density 

functional theory (DFT) calculations to obtain the electronic and optical properties of MnBi 

for its two possible low-temperature phases:  hexagonal phase and zinc-blende phase. We 

identify that the origin of the strong SOC in MnBi is due to the half-filled 3d orbitals of the Mn 

atoms. We employ the nonreciprocal gyrotropy of MnBi to design a nanoscale spin-polarized 

radiation source based on a multilayer structure. The large gyrotropy in this material 

translates into a high degree of spin polarization of the emitted thermal radiation. Further, 

our results suggest that the hexagonal phase of MnBi displays a higher spin-polarized 

emissivity at IR wavelengths compared to its zinc-blende phase.  

 

II. COMPUTATIONAL DETAILS 

A. Methods 

The first-principles Density Functional Theory (DFT) [43,44] calculations were 

performed within a Projector Augmented Wave (PAW) [45,46] framework by using the Vienna 

Ab initio Simulation Package (VASP) [47]. The generalized gradient approximation (GGA) of 

the Perdew–Burke–Ernzerhof (PBE) [48] functional was used to evaluate exchange-

correlation energy. The conjugate-gradient algorithm [49] was used for the optimization of 

the crystal geometry by calculating forces and stress tensors, and by considering degrees-of-

freedom in position, cell shape, and cell volume. Cut-off energy is taken to be at 350 eV for 

the expansion of the plane wave basis for both the hexagonal and zinc-blende phases. 

Monkhorst–Pack [50] 𝑘-point meshes of 13×13×8 and  8×8×8 were used for the sampling of 

the Brillouin Zone for the hexagonal and zinc-blende phases, respectively. The total energy 

convergence threshold of 10−6 eV and Gaussian smearing of 0.05 were used in all the 

calculations presented here. 

At LWIR, a small variation in photon energy (or frequency) corresponds to a substantial 

change in photon wavelength. Therefore, extremely high grid points are required to explore 

the infrared region extensively, which is computationally expensive. We used a total grid point 
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of hundred thousand for the calculation of the dielectric function, which corresponds to 190 

data points per 1 eV interval. Additionally, SOC needs to be included in the calculations which 

is responsible for the large gyrotropy in MnBi in the absence of an applied magnetic field. This 

significantly increases the computational cost.  

 

B. Crystal Structure 

MnBi is known to exhibit two distinct phases: the ferromagnetic low-temperature 

phase (LTP) and the paramagnetic high-temperature phase (HTP) [22]. Most of the 

manganese alloys are antiferromagnetic because of the half-filled 3d orbitals of Mn, however, 

in contrast, MnBi is an exceptional ferromagnetic material [22]. The transition temperature 

from ferro to paramagnetic, and from para to ferromagnetic phases of MnBi were reported 

to be 628 K and 613 K, respectively [52]. The LTP of MnBi is found to crystalize in a hexagonal 

structure with the space group symmetry 𝑝63̅ 𝑚𝑚𝑐⁄  (no. 194) [22]. The unit cell of hexagonal 

LTP MnBi contains two Mn atoms and two Bi atoms as shown in Fig. 1b. In the unit cell, the 

Mn atoms occupy 2a Wyckoff positions with fractional coordinates (0, 0, 0) and (0, 0,
1

2
), and 

the Bi atoms occupy 2c Wyckoff positions with fractional coordinates (
1

3
,

2

3
,

1

4
) and (

2

3
,

2

3
,

3

4
). 

In addition to the stable low-temperature hexagonal phase, a meta-stable zincblende phase 

was also predicted to exist at low temperatures [51]. This zinc-blende phase was predicted to 

crystallize in a cubic structure with the space group 𝐹4̅3𝑚 (no. 216), and its crystal structure 

is the same as the sp-valent octet semiconductors such as GaAs, InAs, GaSb, InSb, and CdTe 

[51]. The unit cell of zinc-blende MnBi contains four Mn atoms and four Bi atoms as shown in 

Fig. 1c. In the unit cell, the Mn atoms occupy 4a Wyckoff positions with fractional coordinates 

(0, 0, 0), (0,
1

2
,

1

2
), (

1

2
, 0,

1

2
) and (

1

2
,

1

2
, 0), and the Bi atoms occupy 4c Wyckoff positions with 

fractional coordinates (
1

4
,

1

4
,

1

4
), (

1

4
,

3

4
,

3

4
), ( 

3

4
,

1

4
,

3

4
) and ( 

3

4
,

3

4
,

1

4
). We calculate the enthalpy of 

formation for both the considered structures. The calculated formation enthalpies of 

hexagonal and zinc-blende phases are −4.3 𝐾𝐽/𝑚𝑜𝑙𝑒 and −3.7 𝐾𝐽/𝑚𝑜𝑙𝑒, respectively. The 

more negative value of the formation enthalpy of hexagonal MnBi suggests that the 

formation of the hexagonal phase is more favourable than that of the zinc-blende phase 

during crystallization process. 

 

C. Calculations of LWIR Optical Constants  

The optical constants of a material can be derived from its real and imaginary parts of 

the dielectric function. The frequency-dependent complex dielectric function of crystalline 

solids is given by 

𝜀(𝜔) = 𝜀1(𝜔) + 𝑖𝜀2(𝜔),              (1) 
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where, 𝜀1(𝜔) and 𝜀2(𝜔) are the real and imaginary parts of the dielectric function, 

respectively. In cartesian coordinates, Eq. (1) can be expressed as 

𝜀(𝜔) = (

𝜀𝑥𝑥(𝜔) 𝜀𝑥𝑦(𝜔) 𝜀𝑥𝑧(𝜔)

𝜀𝑦𝑥(𝜔) 𝜀𝑦𝑦(𝜔) 𝜀𝑦𝑧(𝜔)

𝜀𝑧𝑥(𝜔) 𝜀𝑧𝑦(𝜔) 𝜀𝑧𝑧(𝜔)

).       (2) 

At LWIR wavelengths, there is a significant contribution from intra-band transitions in 

addition to inter-band transitions. Therefore, the dielectric function is a sum of inter- and 

intra-band contributions, 𝜀𝑖𝑛𝑡𝑒𝑟(𝜔) and 𝜀𝑖𝑛𝑡𝑟𝑎(𝜔) respectively, given by 

𝜀(𝜔) = 𝜀𝑖𝑛𝑡𝑒𝑟 (𝜔) + 𝜀𝑖𝑛𝑡𝑟𝑎(𝜔),              (3) 

 

The inter-band contribution to the dielectric function can be derived from the first-

order time-dependent perturbation theory [53], and the corresponding expression is given by  

𝜀𝛼𝛽
𝑖𝑛𝑡𝑒𝑟(𝜔) = 1 −

8𝜋𝑒2

Ω
lim
𝑞→ 0
𝛼→0

1

𝑞2
∑

⟨𝜓𝒌+𝑞𝑒𝛼

𝑐 |𝑒𝑖𝒒⋅𝒓|𝜓𝑘
𝑣⟩ ⟨𝜓𝑘

𝑣|𝑒−𝑖𝒒⋅𝒓|𝜓𝒌+𝑞𝑒𝛽

𝑐 ⟩

(𝐸𝑘+𝑞
𝑐 − 𝐸𝑘

𝑣 − ℏ𝜔 − 𝑖ℏ𝛼)
𝑘,𝑣,𝑐

+ 𝑐𝑐, (4) 

where, 𝜔 is the phonon frequency, 𝑒 is the charge of an electron, Ω is the volume of a unit 

cell, 𝒒 is the photon momentum, 𝒓 is the radius vector, and 𝜓𝑘+𝑞
𝑐  and 𝜓𝑘

𝑣 are the 

wavefunctions for conduction and valence band electrons, respectively at a given electron 

wavevector 𝒌. In practice, we evaluate the imaginary part of the dielectric function 

numerically and calculate the real part by using the Kramers-Kronig relation, given by 

𝜀1
𝑖𝑛𝑡𝑒𝑟(𝜔) = 1 +

2

𝜋
𝑃 ∫

𝜔′𝜀2
𝑖𝑛𝑡𝑒𝑟(𝜔′)𝑑𝜔′

(𝜔′2 − 𝜔2)

∞

0

.               (5) 

Further, a free-electron plasma model is used to calculate the intra-band contributions 

to the dielectric function, given by 

𝜀𝑖𝑛𝑡𝑟𝑎(𝜔) = 1 −
𝜔𝑝

2

𝜔(𝜔 + 𝑖𝛾)
,       (6) 

where, the plasma frequency 𝜔𝑝 can be obtained from first-principles calculations. The 

inverse lifetime 𝛾 can have a value between 0 and 1 eV [54]. The complex optical conductivity 

𝜎(𝜔) is determined through the relation, 

 𝜎(𝜔) = −𝑖
𝜔

4𝜋
[𝜀(𝜔) − 1].    (7) 

 

The hexagonal MnBi crystal has a tetragonal symmetry with the polar Kerr 

magnetization geometry. Therefore, both the fourfold axes and the magnetization are 

perpendicular to the surface of the sample, and the z-axis is chosen to be parallel to these. In 

this case, the dielectric tensor has only three independent components (diagonal 𝜀𝑥𝑥 and 𝜀𝑧𝑧, 

and off-diagonal 𝜀𝑥𝑦) and can be represented as 
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𝜀(𝜔) = (

𝜀𝑥𝑥 𝜀𝑥𝑦 0

−𝜀𝑥𝑦 𝜀𝑥𝑥 0

0 0 𝜀𝑧𝑧

).    (8) 

Similarly, the conductivity tensor for hexagonal MnBi has the form [19] 

𝜎(𝜔) = (

𝜎𝑥𝑥 𝜎𝑥𝑦 0

−𝜎𝑥𝑦 𝜎𝑥𝑥 0

0 0 𝜎𝑧𝑧

).    (9) 

On the other hand, the zinc-blende MnBi has a cubic crystallographic structure, and its 

dielectric tensor has only two independent components (diagonal 𝜀𝑥𝑥 and off-diagonal 𝜀𝑥𝑦) 

and can be represented as  

𝜀(𝜔) = (

𝜀𝑥𝑥 𝜀𝑥𝑦 𝜀𝑥𝑦

−𝜀𝑥𝑦 𝜀𝑥𝑥 𝜀𝑥𝑦

−𝜀𝑥𝑦 −𝜀𝑥𝑦 𝜀𝑥𝑥

).    (10) 

Similarly, the conductivity tensor of zinc-blende MnBi has two independent components: 𝜎𝑥𝑥 

and 𝜎𝑥𝑦. 

 

III. RESULTS AND DISCUSSION 

A. Electronic Properties 

Herein, we present the electronic band structure obtained using the Perdew–Burke–

Ernzerhof (PBE) method including spin polarization and spin-orbit-coupling (SOC). We further 

investigate the total and projected densities of states (PDOS) to understand the individual 

atomic orbital contributions to the total density of states (DOS). In this work, the Fermi level 

is always considered at 0 eV. In Figs. 2a and 2b we have plotted the spin-polarized electronic 

band structure for hexagonal and zinc-blende MnBi, respectively. It is evident from Fig. 2a 

that the bands for both up-spin and down-spin electrons cross the Fermi level, signifying that 

the hexagonal MnBi is metallic for both up- and down-spin electrons. On the other hand, the 

spin-polarized band structure of zinc-blende MnBi (Fig. 2b) reveals that there is a bandgap for 

down-spin electrons, but no bandgap for the up-spin electrons. Therefore, the zinc-blende 

MnBi is a half-metal [51].  

We also investigate the effect of SOC on the band structures of hexagonal and zinc-

blende MnBi shown in Fig. 2c and 2d, respectively. The inclusion of the SOC significantly 

affects the band structures for both the hexagonal and zinc-blende phases as a notable 

deviation is observed in the evolution of bands when compared to the calculations performed 

without including SOC. Also, the effect of SOC is greater for hexagonal MnBi while compared 

to zinc-blende MnBi as the band deviation near the Fermi level is more prominent for the 

hexagonal phase with the inclusion of SOC. 



7 

 

FIG. 2. Electronic band structures of hexagonal and zinc-blende phases of MnBi. Spin-

polarized band structure for (a) hexagonal and (b) zinc-blende MnBi. Effect of SOC on the 

band structure for (c) hexagonal and (d) zinc-blende MnBi. We observe that the inclusion of 

spin-orbit coupling leads to significant changes in the band structures for both the hexagonal 

and zinc-blende phases. The horizontal dashed lines here represent the band structure 

obtained with the inclusion of SOC.  

In Fig. 3, we investigate the total density of states (TDOS) for both the hexagonal and 

zinc-blende MnBi. We further resolve TDOS into PDOS to understand the individual 

contribution from each specific orbital. Results suggest that the 6p orbital of bismuth has 

partial contribution to the valence band at lower energies (-2 to -1 eV). However, the 

contribution near the Fermi level is mainly due to the 3d orbital of the Mn atom. The rest of 

the orbitals of Mn and Bi have negligible contributions to the TDOS. The 3d orbital of Mn has 

5 electrons, i.e., the orbital is half filled. Interestingly, the half (or, partially) filled d and f 

orbital is a major factor for the observed magnetic properties of a material. Therefore, the 

strong SOC in MnBi is due to the half-filled 3d orbital of Mn as evident from the TDOS at the 

Fermi level. 
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FIG. 3. The calculated total and projected density of states for (a) hexagonal and (b) zinc-

blende MnBi. It is found from the projected density of states that the 3d-orbital of Mn is the 

major contributor to the total DOS at the Fermi level. Also, the projected densities of states 

for Mn-4s, Bi-6s and Bi-6p at around the Fermi level are nearly zero. Hence, the strong SOC 

found in MnBi is due to half-filled 3d orbital of the Mn atom.  

 

B. LWIR Non-Reciprocal Optical Properties 

In this section, we study the frequency-dependent dielectric function and conductivity 

characteristics. For a metallic system like MnBi, the intra-band component has a considerable 

contribution to the total dielectric function. Therefore, we consider both the inter-band and 

intra-band components to compute the total dielectric function. Also, Eq. (6) signify that the 

value of inverse lifetime 𝛾 is crucial for the calculation of intra-band dielectric function in the 

low energy regime, especially at IR wavelengths. Herein, we treat MnBi as an ordinary metallic 

system and consider the typical experimental value of 𝛾 for metal as 0.1 eV [54], whereas 

good conductors like silver and gold have 𝛾 of 0.02 eV and 0.07 eV, respectively [55,56]. 

Furthermore, we calculate the full plasma frequency (𝜔𝑝) tensor and use this to estimate the 

intra-band contributions to the dielectric function. The calculated values of 𝜔𝑝 for hexagonal 

MnBi are 1.66, 3.79 and 4.42 eV for tensor elements xy, xx and zz, respectively. On the other 

hand, the calculated values of 𝜔𝑝 for zinc-blende MnBi are found to be 1.65 and 3.98 eV for 

xy and xx, respectively.  

The calculated imaginary and real parts of the dielectric function are plotted in Fig. 4 

for infrared (IR) and visible regions (inset) of the electromagnetic spectra. We consider a wide 

spectrum of wavelengths varying from 5 to 20 μm to capture the optical properties in the 

technologically important LWIR regime. The off-diagonal and the diagonal components of the 

imaginary part of the dielectric function for both the hexagonal and zinc-blende MnBi are 

presented in Fig. 4a. At 5 μm, 𝐼𝑚(𝜀𝑥𝑦) has a value of ~ 40 for both structures, and the value 

is seen to increase gradually with increasing wavelength. The value of 𝐼𝑚(𝜀𝑥𝑦) at 20 μm is as 

high as ~ 400 for the hexagonal phase. On the other hand, at 20 μm, 𝐼𝑚(𝜀𝑥𝑥) for hexagonal 

and zinc-blende phases are ~ 2,000 and ~ 2,400, respectively, and 𝐼𝑚(𝜀𝑧𝑧) for the hexagonal 
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phase is ~ 2,400. Therefore, for the imaginary part of the dielectric function, the off-diagonal 

component is 5 to 6 times smaller than the diagonal components at higher wavelengths. 

Moreover, 𝐼𝑚(𝜀𝑥𝑦) is higher for the hexagonal phase than the zinc-blende phase for the 

entire range of considered IR wavelengths. However, 𝐼𝑚(𝜀𝑥𝑦) for zinc-blende MnBi is found 

to be higher than that of the hexagonal phase for visible wavelengths.  

 

 

FIG. 4. LWIR dielectric function for hexagonal and zinc-blende phases of MnBi. (a) 

Independent components of the imaginary part of the dielectric tensor due to off-diagonal 

and diagonal elements. (b) Independent components of the real part of the dielectric tensor 

due to off-diagonal and diagonal elements. 

The off-diagonal and the diagonal components of the real part of the dielectric 

function are investigated and plotted in Fig. 4b. At low energy, both the off-diagonal and 

diagonal components of the real dielectric function have negative values signifying that the 

considerable contributions from intra-band transitions at LWIR. The 𝑅𝑒(𝜀𝑥𝑦) is more negative 

for the hexagonal phase while compared to that of the zinc-blende phase in the IR regime. 

However, 𝑅𝑒(𝜀𝑥𝑥) is less negative in the hexagonal phase. Overall, our calculations reveal that 

the imaginary off-diagonal dielectric function of MnBi has a significant value compared to its 

real part, especially at IR wavelengths. This leads to a large gyrotropy without any applied 

magnetic field which is extremely useful for thermal spin photonics.  
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FIG. 5. LWIR optical conductivity of hexagonal and zinc-blende phases of MnBi. (a) 

Independent components of the real part of the conductivity tensor due to off-diagonal and 

diagonal parts. (b) Independent components of the imaginary part of the dielectric tensor due 

to off-diagonal and diagonal parts. 

We further calculate the full optical conductivity tensor for both the hexagonal and 

zinc-blende phases of MnBi. The calculated independent components of the real and 

imaginary parts of the conductivity tensors for the incident IR and visible region are presented 

in Fig. 5. Like the imaginary dielectric function, the off-diagonal real part of the conductivity 

has significant values at IR wavelengths. Also, the off-diagonal real part of the conductivity of 

the hexagonal phase is higher than that of the zinc-blende phase. Overall, both the off-

diagonal and diagonal components of the real part of the conductivity increase with 

increasing wavelength. On the other hand, the imaginary part of the conductivity is observed 

to have a small variation over the considered IR range.  

C. Gyrotropy and Infrared Thermal Photonics 

The gyrotropy of a material is defined as the ratio of |𝐼𝑚(𝜀𝑥𝑦)| and |𝑅𝑒(𝜀𝑥𝑥)|, given 

by 

𝑔 =
|𝐼𝑚(𝜀𝑥𝑦)|

|𝑅𝑒(𝜀𝑥𝑥)|
.              (11) 

In Fig. 6(a) and 6(b), we plot the gyrotropy for the hexagonal and zinc-blende phases of MnBi 

as a function of wavelength in the LWIR regime. We observe that the hexagonal phase of 

MnBi displays higher gyrotropy while compared to that of the zinc-blende phase. In the next 

section, we employ the gyrotropy of MnBi in the IR region and show its potential application 

in realizing a nanoscale spin-polarized radiation source.  

We consider a semi-infinite half space of multi-layer design of MnBi at temperature 

𝑇 = 300 𝐾 emitting thermal radiation into the vacuum half space (environment) at 𝑇0 =

 0 𝐾. We evaluate the thermal emission in spherical coordinates (𝜃, 𝜙). The thermal radiation 
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power emitted per unit wavelength 𝑑𝜆 per unit solid angle 𝑑Ω per unit surface area dA for a 

given polarization state �̂� is given by, 

𝑃𝑟𝑎𝑑(𝜃, 𝜙, 𝜆, �̂�) = 𝜂(𝜃, 𝜙, 𝜆, �̂�)
𝐼𝑏𝑏(𝜆, 𝑇)

2
𝑐𝑜𝑠(𝜃)𝑑𝜆 𝑑Ω 𝑑𝐴,                  (12) 

where η is the dimensionless emissivity ∈ [0, 1], 𝐼𝑏𝑏(𝜆, 𝑇) =
2ℎ𝑐2

𝜆5

1

𝑒ℎ𝑐 (𝜆𝑘𝐵𝑇)⁄ −1
 is the Planck 

distribution function for a blackbody at temperature 𝑇, ℎ is the Planck’s constant and 𝑘𝐵 is 

the Boltzmann constant. A factor of 2 in the denominator of Eq. (12) accounts for the two 

orthogonal polarization states. 

 
FIG. 6. The gyrotropy ratio calculated from the DFT calculations, and the simulated circularly 

polarized (CP) thermal emission for hexagonal and zinc-blende MnBi in the LWIR regime. 

Gyrotropy of (a) hexagonal and (b) zinc-blende MnBi. Emissivity for right circularly polarized 

(RCP) denoted as 𝜂(+) and left circularly polarized (LCP) denoted as 𝜂(−) as well as Stokes 

parameter (𝑆3) for (c, e) hexagonal and (d, f) zinc-blende MnBi for two different device 

geometries. Observed asymmetry in 𝜂(+) and 𝜂(−) translates into a spin-polarized thermal 

emission in MnBi with maximum spin polarization at 7 μm.  
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Equation (12) for 𝑃𝑟𝑎𝑑(𝜃, 𝜙, 𝜆, �̂�) has been derived within the radiometry framework 

using a detailed balance of energy and momenta or within the scattering formulation of 

fluctuational electrodynamics [2]. Since we are interested in the spin-polarization of light, we 

calculate the polarization-dependent emissivity in the eigen basis of right circularly polarized 

(RCP) and left circularly polarized (LCP) states. We can define the degree of circular 

polarization, i.e., the 3rd Stokes parameters, for the thermal emission as 

𝑆3(𝜃, 𝜙, 𝜆) =
𝜂(+) − 𝜂(−)

𝜂(+) + 𝜂(−)
 ,                                                       (13) 

where 𝜂(±) denotes the emissivity of RCP and LCP, respectively. For a planar geometry, the 

emission direction for thermal radiation is given by the angles 𝜃, 𝜙 for the propagation 

wavevector �̂�. Eigenvectors of the associated transverse electric (s), and transverse magnetic 

(p) polarization for the plane of incidence spanned by  �̂� and �̂� (normal to the slab surface) 

are given by 

�̂� = [
sin 𝜃 cos 𝜙
sin 𝜃 sin 𝜙

cos 𝜃

] , �̂�𝑠 = [
+ sin 𝜙
− cos 𝜙

0

] , �̂�𝑝 = �̂�𝑠 × �̂� = [
− cos 𝜃 cos 𝜙
− cos 𝜃 sin 𝜙

sin 𝜃

].         (14) 

The RCP and LCP eigenvector corresponds to �̂�𝑠 ± 𝑖�̂�𝑝, respectively. Hence, the spin angular 

momentum for a photon along the propagation direction is ±ℏ for RCP and LCP, respectively. 

The emissivity of RCP and LCP photons in terms of reflectance is given by  

𝜂(+)(𝜔, 𝜃, 𝜙) = 1 − 𝑅(++)(𝜔, 𝜃, 𝜙 + 𝜋) − 𝑅(+−)(𝜔, 𝜃, 𝜙 + 𝜋),    

         𝜂(−)(𝜔, 𝜃, 𝜙) = 1 − 𝑅(−−)(𝜔, 𝜃, 𝜙 + 𝜋) − 𝑅(−+)(𝜔, 𝜃, 𝜙 + 𝜋),   (15) 

where, 𝑅(𝑖𝑗)(𝜔, 𝜃, 𝜙) for 𝑖, 𝑗 ∈  {+, −} denotes the polarization interconversion reflectance 

for the light of angular frequency ω incident in the direction characterized by the angles (𝜃, 

ϕ). These reflectance coefficients depend on the associated Fresnel reflection coefficients in 

�̂�𝑠, �̂�𝑝 basis and given by 

𝑅(++/−−) = |(𝑟𝑠𝑠 + 𝑟𝑝𝑝) ± 𝑖(𝑟𝑠𝑝 − 𝑟𝑝𝑠)|
2

4⁄ ,            

         𝑅(−+/+−) = |(𝑟𝑠𝑠 − 𝑟𝑝𝑝) ± 𝑖(𝑟𝑠𝑝 + 𝑟𝑝𝑠)|
2

4⁄ .           (16) 

where 𝑟𝑗𝑘(𝜔, 𝜃, 𝜙) denotes the amplitude of j-polarized reflected light due to incident k-

polarized light of unit amplitude with frequency ω, and for brevity we have omitted (𝜔, 𝜃, 𝜙)-

dependence on either side of the expression. These reflection coefficients can be evaluated 

by solving the boundary conditions. Numerical codes to obtain these coefficients for a general 

bi-anisotropic media are made available on GitHub (https://github.com/chinmayCK/Fresnel).  

In Fig. 6, we plot the emissivity of RCP and LCP, and the Stoke parameter 𝑆3 as a 

function of LWIR wavelength in two designs of stratified materials. Both designs utilize a thin 

layer of MnBi to generate circularly polarized thermal emission. We optimize the design to 

ensure the emissivity and 𝑆3 has a center around λ = 7 μm. LWIR optical properties in MnBi 

https://github.com/chinmayCK/Fresnel
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are dominated by intra-band contributions. The Ge layer between reflective metallic MnBi 

and Ag on its two sides acts as a Fabry Perot cavity, which resonantly enhances the strength 

of nonreciprocity. Hence, we design a sandwiched structure of thin layer MnBi with Ag to 

enhance 𝑆3. For both hexagonal MnBi and zinc-Blende MnBi, our calculations provide the 

connection between strong gyrotropy and large degree of CP thermal radiation. For MnBi thin 

film on top of a Ge sandwich layer, grown on an Ag substrate, we observe that 𝑆3 can be tuned 

to reach 0.2 at 7 μm. Hence, the large gyrotropy of MnBi can be employed to design a 

nanoscale spin radiation source for LWIR applications.  

 

IV. CONCLUSIONS 

In summary, a first-principles DFT study has been performed to investigate the 

electronic, and LWIR optical properties of MnBi. Strong spin-orbit coupling in MnBi induces a 

large gyrotropy even in the absence of an external magnetic field. We observed that the SOC 

in MnBi is due to the half-filled 3d orbital of Mn atoms. Furthermore, the thermal emission in 

MnBi for a multi-layer design has been studied for right circularly polarized (RCP) and left 

circularly polarized (LCP) photon emission. A significant degree of spin polarization of the 

emissivity is observed due to the large gyrotropy of MnBi. The given result suggests that 

hexagonal MnBi has a better performance for spin-polarized emissivity at LWIR compared to 

zinc-blende MnBi. Hence, hexagonal MnBi is potentially a technologically important 

candidate to form a spin-polarized radiation source for several infrared thermal photonics 

applications.  
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