Publications

2014

P. Shekhar and Z. Jacob, “Strong coupling in hyperbolic metamaterials”, PHYSICAL REVIEW B, vol. 90, no. 4, 2014.

Nanoscale light-matter interaction in the weak-coupling regime has been achieved with unique hyperbolic metamaterial modes possessing a high density of states. Here, we show strong coupling between intersubband transitions (ISBTs) of a multiple quantum well (MQW) slab and the bulk polariton modes of a hyperbolic metamaterial (HMM). These HMM modes have large wave vectors (high-k modes) and are normally evanescent in conventional materials. We analyze a metal-dielectric practical multilayer HMM structure consisting of a highly doped semiconductor acting as a metallic layer and an active multiple quantum well dielectric slab. We observe delocalized metamaterial mode interaction with the active materials distributed throughout the structure. Strong coupling and characteristic anticrossing with a maximum Rabi splitting (RS) energy of up to 52 meV is predicted between the high-k mode of the HMM and the ISBT, a value approximately 10.5 times greater than the ISBT linewidth and 4.5 times greater than the material loss of the structure. The scalability and tunability of the RS energy in an active semiconductor metamaterial device have potential applications in quantum well infrared photodetectors and intersubband light-emitting devices.

Y. Guo and Z. Jacob, “Fluctuational electrodynamics of hyperbolic metamaterials”, Journal of Applied Physics , vol. 115, no. 23, 2014.

We give a detailed account of equilibrium and non-equilibrium fluctuational electrodynamics of hyperbolic metamaterials. We show the unifying aspects of two different approaches; one utilizes the second kind of fluctuation dissipation theorem and the other makes use of the scattering method. We analyze the near-field of hyperbolic media at finite temperatures and show that the lack of spatial coherence can be attributed to the multi-modal nature of super-Planckian thermal emission. We also adopt the analysis to phonon-polaritonic super-lattice metamaterials and describe the regimes suitable for experimental verification of our predicted effects. The results reveal that far-field thermal emission spectra are dominated by epsilon-near-zero and epsilon-near-pole responses as expected from Kirchoff's laws. Our work should aid both theorists and experimentalists to study complex media and engineer equilibrium and non-equilibrium fluctuations for applications in thermal photonics.

P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications”, Nano Convergence , vol. 1, no. 14, 2014.

Metamaterials are nano-engineered media with designed properties beyond those available in nature with applications in all aspects of materials science. In particular, metamaterials have shown promise for next generation optical materials with electromagnetic responses that cannot be obtained from conventional media. We review the fundamental properties of metamaterials with hyperbolic dispersion and present the various applications where such media offer potential for transformative impact. These artificial materials support unique bulk electromagnetic states which can tailor light-matter interaction at the nanoscale. We present a unified view of practical approaches to achieve hyperbolic dispersion using thin film and nanowire structures. We also review current research in the field of hyperbolic metamaterials such as sub-wavelength imaging and broadband photonic density of states engineering. The review introduces the concepts central to the theory of hyperbolic media as well as nanofabrication and characterization details essential to experimentalists. Finally, we outline the challenges in the area and offer a set of directions for future work.

Total internal reflection (TIR) is a ubiquitous phenomenon used in photonic devices ranging from waveguides and resonators to lasers and optical sensors. Controlling this phenomenon and light confinement are keys to the future integration of nanoelectronics and nanophotonics on the same silicon platform. We introduced the concept of relaxed TIR, in 2014, to control evanescent waves generated during TIR. These unchecked evanescent waves are the fundamental reason photonic devices are inevitably diffraction limited and cannot be miniaturized. Our key design concept is the engineered anisotropy of the medium into which the evanescent wave extends, thus allowing for skin depth engineering without any metallic components. In this paper, we give an overview of our approach and compare it to key classes of photonic devices such as plasmonic waveguides, photonic crystal waveguides, and slot waveguides. We show how our work can overcome a long-standing issue in photonics, namely, nanoscale light confinement with fully transparent dielectric media.

See also: Photonics
Y. Guo and Z. Jacob, “Giant nonequilibrium vacuum friction: Role of singular evanescent wave resonances in moving media”, Journal of Optics, vol. 16, no. 11, 2014.

We recently reported on the existence of a singular resonance in moving media which arises due to perfect amplitude and phase balance of evanescent waves. We show here that the nonequilibrium vacuum friction (lateral Casimir-Lifshitz force) between moving plates separated by a finite gap is fundamentally dominated by this resonance. Our result is robust to losses and dispersion as well as polarization mixing which occurs in the relativistic limit.

See also: Topological
S. Jahani and Z. Jacob, “Transparent subdiffraction optics: nanoscale light confinement without metal”, Optica, vol. 1, no. 2, pp. 96–100, 2014.

The integration of nanoscale electronics with conventional optical devices is restricted by the diffraction limit of light. Metals can confine light at the subwavelength scales needed, but they are lossy, while dielectric materials do not confine evanescent waves outside a waveguide or resonator, leading to cross talk between components. We show that light can be confined below the diffraction limit using completely transparent artificial media (metamaterials with ?>1, ?=1ε>1, μ=1). Our approach relies on controlling the optical momentum of evanescent waves—an important electromagnetic property overlooked in photonic devices. For practical applications, we propose a class of waveguides using this approach that outperforms the cross-talk performance by 1 order of magnitude as compared to any existing photonic structure. Our work overcomes a critical stumbling block for nanophotonics by completely averting the use of metals and can impact electromagnetic devices from the visible to microwave frequency ranges.

Y. Guo and Z. Jacob, “Singular evanescent wave resonances in moving media”, Optics Express, vol. 22, no. 21, pp. 26193–26202, 2014.

Resonators fold the path of light by reflections leading to a phase balance and thus constructive addition of propagating waves. However, amplitude decrease of these waves due to incomplete reflection or material absorption leads to a finite quality factor of all resonances. Here we report on our discovery that evanescent waves can lead to a perfect phase and amplitude balance causing an ideal Fabry-Perot resonance condition in spite of material absorption and non-ideal reflectivities. This counterintuitive resonance occurs if and only if the metallic Fabry-Perot plates are in relative motion to each other separated by a critical distance. We show that the energy needed to approach the resonance arises from the conversion of the mechanical energy of motion to electromagnetic energy. The phenomenon is similar to lasing where the losses in the cavity resonance are exactly compensated by optical gain media instead of mechanical motion. Nonlinearities and non-localities in material response will inevitably curtail any singularities however we show the giant enhancement in non-equilibrium phenomena due to such resonances in moving media.

See also: Topological

2013

C. L. Cortes and Z. Jacob, “Photonic analog of a van Hove singularity in metamaterials”, PHYSICAL REVIEW B, vol. 88, no. 4, 2013.

We introduce the photonic analog of electronic van Hove singularities (VHS) in artificial media (metamaterials) with hyperbolic dispersion. Unlike photonic and electronic crystals, the VHS in metamaterials are unrelated to the underlying periodicity and occur due to slow-light modes in the structure. We show that the VHS characteristics are manifested in the near-field local density of optical states in spite of the losses, dispersion, and finite unit-cell size of the hyperbolic metamaterial. Finally, we show that this work should lead to quantum, thermal, nanolasing, and biosensing applications of van Hove singularities in hyperbolic metamaterials achievable by current fabrication technology.

Y. Guo and Z. Jacob, “Thermal hyperbolic metamaterials”, Optics Express, vol. 21, no. 12, pp. 15014–15019, 2013.

We explore the near-field radiative thermal energy transfer properties of hyperbolic metamaterials. The presence of unique electromagnetic states in a broad bandwidth leads to super-planckian thermal energy transfer between metamaterials separated by a nano-gap. We consider practical phonon-polaritonic metamaterials for thermal engineering in the mid-infrared range and show that the effect exists in spite of the losses, absorption and finite unit cell size. For thermophotovoltaic energy conversion applications requiring energy transfer in the near-infrared range we introduce high temperature hyperbolic metamaterials based on plasmonic materials with a high melting point. Our work paves the way for practical high temperature radiative thermal energy transfer applications of hyperbolic metamaterials.

W. D. Newman, C. L. Cortes, and Z. Jacob, “Enhanced and directional single-photon emission in hyperbolic metamaterials”, Journal of the Optical Society of America B, vol. 30, no. 4, pp. 766–775, 2013.

We propose an approach to enhance and direct the spontaneous emission from isolated emitters embedded inside hyperbolic metamaterials (HMMs) into single-photon beams. The approach rests on collective plasmonic Bloch modes of HMMs, which propagate in highly directional beams called quantum resonance cones. We propose a pumping scheme using the transparency window of the HMM that occurs near the topological transition. Finally, we address the challenge of outcoupling these broadband resonance cones into vacuum using a dielectric bullseye grating. We give a detailed analysis of quenching and design the metamaterial to have a huge Purcell factor in a broad bandwidth in spite of the losses in the metal. Our work should help motivate experiments in the development of single-photon sources for broadband emitters such as nitrogen vacancy centers in diamond.